Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37994903

RESUMO

Reproducible research and open science practices have the potential to accelerate scientific progress by allowing others to reuse research outputs, and by promoting rigorous research that is more likely to yield trustworthy results. However, these practices are uncommon in many fields, so there is a clear need for training that helps and encourages researchers to integrate reproducible research and open science practices into their daily work. Here, we outline eleven strategies for making training in these practices the norm at research institutions. The strategies, which emerged from a virtual brainstorming event organized in collaboration with the German Reproducibility Network, are concentrated in three areas: (i) adapting research assessment criteria and program requirements; (ii) training; (iii) building communities. We provide a brief overview of each strategy, offer tips for implementation, and provide links to resources. We also highlight the importance of allocating resources and monitoring impact. Our goal is to encourage researchers - in their roles as scientists, supervisors, mentors, instructors, and members of curriculum, hiring or evaluation committees - to think creatively about the many ways they can promote reproducible research and open science practices in their institutions.


Assuntos
Mentores , Médicos , Humanos , Reprodutibilidade dos Testes , Seleção de Pessoal , Pesquisadores
2.
Chaos ; 33(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486668

RESUMO

Adaptivity is a dynamical feature that is omnipresent in nature, socio-economics, and technology. For example, adaptive couplings appear in various real-world systems, such as the power grid, social, and neural networks, and they form the backbone of closed-loop control strategies and machine learning algorithms. In this article, we provide an interdisciplinary perspective on adaptive systems. We reflect on the notion and terminology of adaptivity in different disciplines and discuss which role adaptivity plays for various fields. We highlight common open challenges and give perspectives on future research directions, looking to inspire interdisciplinary approaches.

3.
J Physiol ; 601(15): 3071-3090, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36068723

RESUMO

In the brain, patterns of neural activity represent sensory information and store it in non-random synaptic connectivity. A prominent theoretical hypothesis states that assemblies, groups of neurons that are strongly connected to each other, are the key computational units underlying perception and memory formation. Compatible with these hypothesised assemblies, experiments have revealed groups of neurons that display synchronous activity, either spontaneously or upon stimulus presentation, and exhibit behavioural relevance. While it remains unclear how assemblies form in the brain, theoretical work has vastly contributed to the understanding of various interacting mechanisms in this process. Here, we review the recent theoretical literature on assembly formation by categorising the involved mechanisms into four components: synaptic plasticity, symmetry breaking, competition and stability. We highlight different approaches and assumptions behind assembly formation and discuss recent ideas of assemblies as the key computational unit in the brain.


Assuntos
Modelos Neurológicos , Neurônios , Neurônios/fisiologia , Plasticidade Neuronal/fisiologia , Encéfalo
4.
PLoS Comput Biol ; 18(12): e1010682, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36459503

RESUMO

Synaptic changes are hypothesized to underlie learning and memory formation in the brain. But Hebbian synaptic plasticity of excitatory synapses on its own is unstable, leading to either unlimited growth of synaptic strengths or silencing of neuronal activity without additional homeostatic mechanisms. To control excitatory synaptic strengths, we propose a novel form of synaptic plasticity at inhibitory synapses. Using computational modeling, we suggest two key features of inhibitory plasticity, dominance of inhibition over excitation and a nonlinear dependence on the firing rate of postsynaptic excitatory neurons whereby inhibitory synaptic strengths change with the same sign (potentiate or depress) as excitatory synaptic strengths. We demonstrate that the stable synaptic strengths realized by this novel inhibitory plasticity model affects excitatory/inhibitory weight ratios in agreement with experimental results. Applying a disinhibitory signal can gate plasticity and lead to the generation of receptive fields and strong bidirectional connectivity in a recurrent network. Hence, a novel form of nonlinear inhibitory plasticity can simultaneously stabilize excitatory synaptic strengths and enable learning upon disinhibition.


Assuntos
Aprendizagem , Plasticidade Neuronal , Inibição Psicológica , Encéfalo , Sinapses
5.
Trends Neurosci ; 45(12): 884-898, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36404455

RESUMO

Diverse inhibitory neurons in the mammalian brain shape circuit connectivity and dynamics through mechanisms of synaptic plasticity. Inhibitory plasticity can establish excitation/inhibition (E/I) balance, control neuronal firing, and affect local calcium concentration, hence regulating neuronal activity at the network, single neuron, and dendritic level. Computational models can synthesize multiple experimental results and provide insight into how inhibitory plasticity controls circuit dynamics and sculpts connectivity by identifying phenomenological learning rules amenable to mathematical analysis. We highlight recent studies on the role of inhibitory plasticity in modulating excitatory plasticity, forming structured networks underlying memory formation and recall, and implementing adaptive phenomena and novelty detection. We conclude with experimental and modeling progress on the role of interneuron-specific plasticity in circuit computation and context-dependent learning.


Assuntos
Plasticidade Neuronal , Neurônios , Humanos , Animais , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Aprendizagem/fisiologia , Mamíferos
7.
Elife ; 102021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34647889

RESUMO

Animals depend on fast and reliable detection of novel stimuli in their environment. Neurons in multiple sensory areas respond more strongly to novel in comparison to familiar stimuli. Yet, it remains unclear which circuit, cellular, and synaptic mechanisms underlie those responses. Here, we show that spike-timing-dependent plasticity of inhibitory-to-excitatory synapses generates novelty responses in a recurrent spiking network model. Inhibitory plasticity increases the inhibition onto excitatory neurons tuned to familiar stimuli, while inhibition for novel stimuli remains low, leading to a network novelty response. The generation of novelty responses does not depend on the periodicity but rather on the distribution of presented stimuli. By including tuning of inhibitory neurons, the network further captures stimulus-specific adaptation. Finally, we suggest that disinhibition can control the amplification of novelty responses. Therefore, inhibitory plasticity provides a flexible, biologically plausible mechanism to detect the novelty of bottom-up stimuli, enabling us to make experimentally testable predictions.


Assuntos
Comportamento Animal , Córtex Cerebral/fisiologia , Comportamento Exploratório , Modelos Neurológicos , Inibição Neural , Plasticidade Neuronal , Transmissão Sináptica , Potenciais de Ação , Animais , Simulação por Computador , Camundongos , Periodicidade , Tempo de Reação , Detecção de Sinal Psicológico , Fatores de Tempo
8.
PLoS Comput Biol ; 16(5): e1007835, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32384081

RESUMO

Non-random connectivity can emerge without structured external input driven by activity-dependent mechanisms of synaptic plasticity based on precise spiking patterns. Here we analyze the emergence of global structures in recurrent networks based on a triplet model of spike timing dependent plasticity (STDP), which depends on the interactions of three precisely-timed spikes, and can describe plasticity experiments with varying spike frequency better than the classical pair-based STDP rule. We derive synaptic changes arising from correlations up to third-order and describe them as the sum of structural motifs, which determine how any spike in the network influences a given synaptic connection through possible connectivity paths. This motif expansion framework reveals novel structural motifs under the triplet STDP rule, which support the formation of bidirectional connections and ultimately the spontaneous emergence of global network structure in the form of self-connected groups of neurons, or assemblies. We propose that under triplet STDP assembly structure can emerge without the need for externally patterned inputs or assuming a symmetric pair-based STDP rule common in previous studies. The emergence of non-random network structure under triplet STDP occurs through internally-generated higher-order correlations, which are ubiquitous in natural stimuli and neuronal spiking activity, and important for coding. We further demonstrate how neuromodulatory mechanisms that modulate the shape of the triplet STDP rule or the synaptic transmission function differentially promote structural motifs underlying the emergence of assemblies, and quantify the differences using graph theoretic measures.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia
9.
Neuron ; 106(5): 842-854.e4, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32213321

RESUMO

Excitation in neural circuits must be carefully controlled by inhibition to regulate information processing and network excitability. During development, cortical inhibitory and excitatory inputs are initially mismatched but become co-tuned or balanced with experience. However, little is known about how excitatory-inhibitory balance is defined at most synapses or about the mechanisms for establishing or maintaining this balance at specific set points. Here we show how coordinated long-term plasticity calibrates populations of excitatory-inhibitory inputs onto mouse auditory cortical pyramidal neurons. Pairing pre- and postsynaptic activity induced plasticity at paired inputs and different forms of heterosynaptic plasticity at the strongest unpaired synapses, which required minutes of activity and dendritic Ca2+ signaling to be computed. Theoretical analyses demonstrated how the relative rate of heterosynaptic plasticity could normalize and stabilize synaptic strengths to achieve any possible excitatory-inhibitory correlation. Thus, excitatory-inhibitory balance is dynamic and cell specific, determined by distinct plasticity rules across multiple excitatory and inhibitory synapses.


Assuntos
Potenciais de Ação/fisiologia , Córtex Auditivo/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Animais , Sinalização do Cálcio , Potenciais Evocados , Potenciação de Longa Duração/fisiologia , Camundongos , Técnicas de Patch-Clamp , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...