Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Respir Res ; 24(1): 317, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104128

RESUMO

BACKGROUND: Cystic fibrosis (CF) is a genetic disorder causing poor mucociliary clearance in the airways and subsequent respiratory infection. The recently approved triple therapy Elexacaftor-Tezacaftor-Ivacaftor (ETI) has significantly improved lung function and decreased airway infection in persons with CF (pwCF). This improvement has been shown to occur rapidly, within the first few weeks of treatment. The effects of longer term ETI therapy on lung infection dynamics, however, remain mostly unknown. RESULTS: Here, we applied 16S rRNA gene amplicon sequencing, untargeted metabolomics, and neutral models to high-resolution, longitudinally collected sputum samples from pwCF on ETI therapy (162 samples, 7 patients) and compared to similarly collected data set from pwCF not taking ETI (630 samples, 9 patients). Because ETI reduces sputum production, samples were collected in freezers provided in the subject's homes at least 3 months after first taking ETI, with those on ETI collecting a sample approximately weekly. The lung function (%ppFEV1) of those in our longitudinal cohort significantly improved after ETI (6.91, SD = 7.74), indicating our study cohort was responsive to ETI. The daily variation of alpha- and beta-diversity of both the microbiome and metabolome was higher for those on ETI, reflecting a more dynamic microbial community and chemical environment during treatment. Four of the seven subjects on ETI were persistently infected with Pseudomonas or Burkholderia in their sputum throughout the sampling period while the total bacterial load significantly decreased with time (R = - 0.42, p = 0.01) in only one subject. The microbiome and metabolome dynamics on ETI were personalized, where some subjects had a progressive change with time on therapy, whereas others had no association with time on treatment. To further classify the augmented variance of the CF microbiome under therapy, we fit the microbiome data to a Hubbell neutral dynamics model in a patient-stratified manner and found that the subjects on ETI had better fit to a neutral model. CONCLUSION: This study shows that the longitudinal microbiology and chemistry in airway secretions from subjects on ETI has become more dynamic and neutral and that after the initial improvement in lung function, many are still persistently infected with CF pathogens.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/diagnóstico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Simulação de Dinâmica Molecular , RNA Ribossômico 16S , Pulmão , Regulador de Condutância Transmembrana em Fibrose Cística , Mutação
2.
Res Sq ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37841851

RESUMO

Background: Cystic fibrosis (CF) is a genetic disorder causing poor mucociliary clearance in the airways and subsequent respiratory infection. The recently approved triple therapy Elexacaftor-Tezacaftor-Ivacaftor (ETI) has significantly improved the lung function and decreased airway infection of persons with CF (pwCF). This improvement has been shown to occur rapidly, within the first few weeks of treatment. The effects of longer term ETI therapy on lung infection dynamics, however, remains mostly unknown. Results: Here, we applied 16S rRNA gene amplicon sequencing, untargeted metabolomics, and neutral models to high-resolution, longitudinally collected sputum samples from pwCF on ETI therapy (162 samples, 7 patients) and compared to similarly collected data set of CF subjects not taking ETI (630 samples, 9 patients). Because ETI reduces sputum production, samples were collected in freezers provided in the subject's homes at least 3 months after first taking ETI, with those on ETI collecting a sample approximately weekly. The lung function (%ppFEV1) of those in our longitudinal cohort significantly improved after ETI (6.91, SD = 7.74), indicating our study cohort was responsive to ETI. The daily variation of alpha- and beta-diversity of both the microbiome and metabolome was higher for those on ETI, reflecting a more dynamic microbial community and chemical environment during treatment. Four of the seven subjects on ETI were persistently infected with Pseudomonas or Burkholderia in their sputum throughout the sampling period. The microbiome and metabolome dynamics on ETI were personalized, where some subjects had a progressive change with time on therapy, whereas others had no association with time on treatment. To further classify the augmented variance of the CF microbiome under therapy, we fit the microbiome data to a Hubbell neutral dynamics model in a patient-stratified manner and found that the subjects on ETI had better fit to a neutral model. Conclusion: This study shows that the longitudinal microbiology and chemistry in airway secretions from subjects on ETI has become more dynamic and neutral, and that after the initial improvement in lung function, many are still persistently infected with CF pathogens.

3.
ISME J ; 16(9): 2065-2075, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35597889

RESUMO

Antibiotics are our primary approach to treating complex infections, yet we have a poor understanding of how these drugs affect microbial communities. To better understand antimicrobial effects on host-associated microbial communities we treated cultured sputum microbiomes from people with cystic fibrosis (pwCF, n = 24) with 11 different antibiotics, supported by theoretical and mathematical modeling-based predictions in a mucus-plugged bronchiole microcosm. Treatment outcomes we identified in vitro that were predicted in silico were: 1) community death, 2) community resistance, 3) pathogen killing, and 4) fermenter killing. However, two outcomes that were not predicted when antibiotics were applied were 5) community profile shifts with little change in total bacterial load (TBL), and 6) increases in TBL. The latter outcome was observed in 17.8% of samples with a TBL increase of greater than 20% and 6.8% of samples with an increase greater than 40%, demonstrating significant increases in community carrying capacity in the presence of an antibiotic. An iteration of the mathematical model showed that TBL increase was due to antibiotic-mediated release of pH-dependent inhibition of pathogens by anaerobe fermentation. These dynamics were verified in vitro when killing of fermenters resulted in a higher community carrying capacity compared to a no antibiotic control. Metagenomic sequencing of sputum samples during antibiotic therapy revealed similar dynamics in clinical samples. This study shows that the complex microbial ecology dictates the outcomes of antibiotic therapy against a polymicrobial infection.


Assuntos
Coinfecção , Fibrose Cística , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Coinfecção/tratamento farmacológico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Humanos , Metagenoma , Escarro/microbiologia
4.
J Cyst Fibros ; 21(6): 996-1005, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34824018

RESUMO

BACKGROUND: Elexacaftor-Tezacaftor-Ivacaftor (ETI) therapy is showing promising efficacy for treatment of cystic fibrosis (CF) and is becoming more widely available since recent FDA approval. However, little is known about how these drugs will affect lung infections, which are the leading cause of morbidity and mortality among people with CF (pwCF). METHODS: We analyzed sputum microbiome and metabolome data from pwCF (n=24) before and after ETI therapy using 16S rRNA gene sequencing and untargeted metabolomics. RESULTS: The sputum microbiome diversity, particularly its evenness, was increased (p=0.036) and the microbiome profiles were different between individuals before and after therapy (PERMANOVA F=1.92, p=0.044). Despite these changes, the microbiomes remained more similar within an individual than across the sampled population. No specific microbial taxa differed in relative abundance before and after therapy, but the collective log-ratio of classic CF pathogens to anaerobes significantly decreased (p=0.013). The sputum metabolome also showed changes associated with ETI (PERMANOVA F=4.22, p=0.002) and was characterized by greater variation across subjects while on treatment. Changes in the metabolome were driven by a decrease in peptides, amino acids, and metabolites from the kynurenine pathway, which were associated with a decrease in CF pathogens. Metabolism of the three small molecules that make up ETI was extensive, including previously uncharacterized structural modifications. CONCLUSIONS: ETI therapy is associated with a changing microbiome and metabolome in airway mucus. This effect was stronger on sputum biochemistry, which may reflect changing niche space for microbial residency in lung mucus as the drug's effects take hold. FUNDING: This project was funded by a National Institute of Allergy and Infectious Disease Grant R01AI145925.


Assuntos
Fibrose Cística , Microbiota , Humanos , Fibrose Cística/genética , RNA Ribossômico 16S/genética , Aminofenóis/uso terapêutico , Benzodioxóis/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Pulmão/metabolismo
5.
Front Microbiol ; 8: 1922, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29067005

RESUMO

Self-transmissible and mobilizable plasmids contribute to the emergence and spread of multidrug-resistant bacteria by enabling the horizontal transfer of acquired antibiotic resistance. The objective of this study was to capture and characterize self-transmissible and mobilizable resistance plasmids from a coastal wetland impacted by urban stormwater runoff and human wastewater during the rainy season. Four plasmids were captured, two self-transmissible and two mobilizable, using both mating and enrichment approaches. Plasmid genomes, sequenced with either Illumina or PacBio platforms, revealed representatives of incompatibility groups IncP-6, IncR, IncN3, and IncF. The plasmids ranged in size from 36 to 144 kb and encoded known resistance genes for most of the major classes of antibiotics used to treat Gram-negative infections (tetracyclines, sulfonamides, ß-lactams, fluoroquinolones, aminoglycosides, and amphenicols). The mobilizable IncP-6 plasmid pLNU-11 was discovered in a strain of Citrobacter freundii enriched from the wetland sediments with tetracycline and nalidixic acid, and encodes a novel AmpC-like ß-lactamase (blaWDC-1), which shares less than 62% amino acid sequence identity with the PDC class of ß-lactamases found in Pseudomonas aeruginosa. Although the IncR plasmid pTRE-1611 was captured by mating wetland bacteria with P. putida KT2440 as recipient, it was found to be mobilizable rather than self-transmissible. Two self-transmissible multidrug-resistance plasmids were also captured: the small (48 kb) IncN3 plasmid pTRE-131 was captured by mating wetland bacteria with Escherichia coli HY842 where it is seemed to be maintained at nearly 240 copies per cell, while the large (144 kb) IncF plasmid pTRE-2011, which was isolated from a cefotaxime-resistant environmental strain of E. coli ST744, exists at just a single copy per cell. Furthermore, pTRE-2011 bears the globally epidemic blaCTX-M-55 extended-spectrum ß-lactamase downstream of ISEcp1. Our results indicate that urban coastal wetlands are reservoirs of diverse self-transmissible and mobilizable plasmids of relevance to human health.

6.
Microb Drug Resist ; 22(4): 312-20, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26670020

RESUMO

The CTX-M-type extended-spectrum ß-lactamases (ESBLs) present a serious public health threat as they have become nearly ubiquitous among clinical gram-negative pathogens, particularly the enterobacteria. To aid in the understanding and eventual control of the spread of such resistance genes, we sought to determine the diversity of CTX-M ESBLs not among clinical isolates, but in the environment, where weaker and more diverse selective pressures may allow greater enzyme diversification. This was done by examining the CTX-M diversity in municipal wastewater and urban coastal wetlands in southern California, United States, by Sanger sequencing of polymerase chain reaction amplicons. Of the five known CTX-M phylogroups (1, 2, 8, 9, and 25), only genes from groups 1 and 2 were detected in both wastewater treatment plants (WWTPs), and group 1 genes were also detected in one of the two wetlands after a winter rain. The highest relative abundance of blaCTX-M group 1 genes was in the sludge of one WWTP (2.1 × 10(-4) blaCTX-M copies/16S rRNA gene copy). Gene libraries revealed surprisingly high nucleotide sequence diversity, with 157 new variants not found in GenBank, representing 99 novel amino acid sequences. Our results indicate that the resistomes of WWTPs and urban wetlands contain diverse blaCTX-M ESBLs, which may constitute a mobile reservoir of clinically relevant resistance genes.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Klebsiella pneumoniae/genética , Microbiologia da Água , Resistência beta-Lactâmica/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Técnicas de Tipagem Bacteriana , California , Cidades , Escherichia coli/classificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/classificação , Expressão Gênica , Variação Genética , Genótipo , Humanos , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Filogenia , Plasmídeos/química , Plasmídeos/metabolismo , Análise de Sequência de DNA , Águas Residuárias/microbiologia , Áreas Alagadas , beta-Lactamases/classificação , beta-Lactamas/farmacologia
7.
Cancer Res ; 74(14): 3753-63, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25028366

RESUMO

Neuroblastoma is a pediatric cancer with significant genomic and biologic heterogeneity. p16 and ARF, two important tumor-suppressor genes on chromosome 9p21, are inactivated commonly in most cancers, but paradoxically overexpressed in neuroblastoma. Here, we report that exon γ in p16 is also part of an undescribed long noncoding RNA (lncRNA) that we have termed CAI2 (CDKN2A/ARF Intron 2 lncRNA). CAI2 is a single-exon gene with a poly A signal located in but independent of the p16/ARF exon 3. CAI2 is expressed at very low levels in normal tissue, but is highly expressed in most tumor cell lines with an intact 9p21 locus. Concordant expression of CAI2 with p16 and ARF in normal tissue along with the ability of CAI2 to induce p16 expression suggested that CAI2 may regulate p16 and/or ARF. In neuroblastoma cells transformed by serial passage in vitro, leading to more rapid proliferation, CAI2, p16, and ARF expression all increased dramatically. A similar relationship was also observed in primary neuroblastomas where CAI2 expression was significantly higher in advanced-stage neuroblastoma, independently of MYCN amplification. Consistent with its association with high-risk disease, CAI2 expression was also significantly associated with poor clinical outcomes, although this effect was reduced when adjusted for MYCN amplification. Taken together, our findings suggested that CAI2 contributes to the paradoxical overexpression of p16 in neuroblastoma, where CAI2 may offer a useful biomarker of high-risk disease.


Assuntos
Cromossomos Humanos Par 9 , Regulação Neoplásica da Expressão Gênica , Neuroblastoma/genética , Neuroblastoma/patologia , RNA Longo não Codificante/genética , Fatores de Ribosilação do ADP/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Criança , Pré-Escolar , Inibidor p16 de Quinase Dependente de Ciclina/genética , Seguimentos , Expressão Gênica , Ordem dos Genes , Humanos , Lactente , Recém-Nascido , Estadiamento de Neoplasias , Neuroblastoma/mortalidade , Prognóstico , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...