Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 13(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36984792

RESUMO

The ability to monitor the dynamics of stem cell differentiation is a major goal for understanding biochemical evolution pathways. Automating the process of metabolic profiling using 2D NMR helps us to understand the various differentiation behaviors of stem cells, and therefore sheds light on the cellular pathways of development, and enhances our understanding of best practices for in vitro differentiation to guide cellular therapies. In this work, the dynamic evolution of adipose-tissue-derived human Mesenchymal stem cells (AT-derived hMSCs) after fourteen days of cultivation, adipocyte and osteocyte differentiation, was inspected based on 1H-1H TOCSY using machine learning. Multi-class classification in addition to the novelty detection of metabolites was established based on a control hMSC sample after four days' cultivation and we successively detected the changes of metabolites in differentiated MSCs following a set of 1H-1H TOCSY experiments. The classifiers Kernel Null Foley-Sammon Transform and Kernel Density Estimation achieved a total classification error between 0% and 3.6% and false positive and false negative rates of 0%. This approach was successfully able to automatically reveal metabolic changes that accompanied MSC cellular evolution starting from their undifferentiated status to their prolonged cultivation and differentiation into adipocytes and osteocytes using machine learning supporting the research in the field of metabolic pathways of stem cell differentiation.

2.
Comput Struct Biotechnol J ; 20: 2965-2977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782733

RESUMO

Most metabolic profiling approaches focus only on identifying pre-known metabolites on NMR TOCSY spectrum using configured parameters. However, there is a lack of tasks dealing with automating the detection of new metabolites that might appear during the dynamic evolution of biological cells. Novelty detection is a category of machine learning that is used to identify data that emerge during the test phase and were not considered during the training phase. We propose a novelty detection system for detecting novel metabolites in the 2D NMR TOCSY spectrum of a breast cancer-tissue sample. We build one- and multi-class recognition systems using different classifiers such as, Kernel Null Foley-Sammon Transform, Kernel Density Estimation, and Support Vector Data Description. The training models were constructed based on different sizes of training data and are used in the novelty detection procedure. Multiple evaluation measures were applied to test the performance of the novelty detection methods. Depending on the training data size, all classifiers were able to achieve 0% false positive rates and total misclassification error in addition to 100% true positive rates. The median total time for the novelty detection process varies between 1.5 and 20 seconds, depending on the classifier and the amount of training data. The results of our novel metabolic profiling method demonstrate its suitability, robustness and speed in automated metabolic research.

3.
Comput Struct Biotechnol J ; 19: 5047-5058, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589182

RESUMO

Metabolomics is an expanding field of medical diagnostics since many diseases cause metabolic reprogramming alteration. Additionally, the metabolic point of view offers an insight into the molecular mechanisms of diseases. Due to the complexity of metabolic assignment dependent on the 1D NMR spectral analysis, 2D NMR techniques are preferred because of spectral resolution issues. Thus, in this work, we introduce an automated metabolite identification and assignment from 1H-1H TOCSY (total correlation spectroscopy) using real breast cancer tissue. The new approach is based on customized and extended semi-supervised classifiers: KNFST, SVM, third (PC3) and fourth (PC4) degree polynomial. In our approach, metabolic assignment is based only on the vertical and horizontal frequencies of the metabolites in the 1H-1H TOCSY. KNFST and SVM show high performance (high accuracy and low mislabeling rate) in relatively low size of initially labeled training data. PC3 and PC4 classifiers showed lower accuracy and high mislabeling rates, and both classifiers fail to provide an acceptable accuracy at extremely low size (≤9% of the entire dataset) of initial training data. Additionally, semi-supervised classifiers were implemented to obtain a fully automatic procedure for signal assignment and deconvolution of TOCSY, which is a big step forward in NMR metabolic profiling. A set of 27 metabolites were deduced from the TOCSY, and their assignments agreed with the metabolites deduced from a 1D NMR spectrum of the same sample analyzed by conventional human-based methodology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...