Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animal ; 18(3): 101099, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377811

RESUMO

A key characteristic of free-range chicken farming is to enable chickens to spend time outdoors. However, each chicken may use the available areas for roaming in variable ways. To check if, and how, broilers use their outdoor range at an individual level, we need to reliably characterise range use behaviour. Traditional methods relying on visual scans require significant time investment and only provide discontinuous information. Passive RFID (Radio Frequency Identification) systems enable tracking individually tagged chickens' when they go through pop-holes; hence, they only provide partial information on the movements of individual chickens. Here, we describe a new method to measure chickens' range use and test its reliability on three ranges each containing a different breed. We used an active RFID system to localise chickens in their barn, or in one of nine zones of their range, every 30 seconds and assessed range-use behaviour in 600 chickens belonging to three breeds of slow- or medium-growing broilers used for outdoor production (all <40 g daily weight gain). From those real-time locations, we determined five measures to describe daily range use: time spent in the barn, number of outdoor accesses, number of zones visited in a day, gregariousness (an index that increases when birds spend time in zones where other birds are), and numbers of zone changes. Principal Component Analyses (PCAs) were performed on those measures, in each production system, to create two synthetic indicators of chickens' range use behaviour. The first two PCA axes represented over 90% of the variance of the five measures and were both consistent over time and correlated with independent visual scans. Contributions of the five measures to the PCAs were similar among breeds, except for the correlation between the number of outdoor accesses and the four other measures. PC1 correlated with time spent inside the barn and zone changes frequency, whilst PC2 was explained by exploration of the range. Taken together, PC1 and PC2 indicators showed that range use increased with age, outdoor temperature (in spring), and did not differ between males and females. Importantly, daily scores for both indicators were repeatable among individuals - particularly in PC1 - showing inter-individual variability on range-use. The characterisation of broiler behaviour around their range with these reliable and repeatable indicators provides novel tools to help understand individual variations of range-use in free-range farming.


Assuntos
Galinhas , Abrigo para Animais , Humanos , Masculino , Feminino , Animais , Reprodutibilidade dos Testes , Comportamento Animal , Criação de Animais Domésticos
2.
Front Physiol ; 13: 935868, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812337

RESUMO

Background: Chicken meat has become a major source of protein for human consumption. However, the quality of the meat is not yet under control, especially since pH values that are too low or too high are often observed. In an attempt to get a better understanding of the genetic and biochemical determinants of the ultimate pH, two genetic lines of broilers were divergently selected for low (pHu-) or high (pHu+) breast meat pHu. In this study, the serum lipidome of 17-day-old broilers from both lines was screened for pHu markers using liquid-chromatography coupled with mass spectrometry (LC-HRMS). Results: A total of 185 lipids belonging to 4 groups (glycerolipids, glycerophospholipids, sterols, sphingolipids) were identified in the sera of 268 broilers from the pHu lines by targeted lipidomics. The glycerolipids, which are involved in energy storage, were in higher concentration in the blood of pHu- birds. The glycerophospholipids (phosphatidylcholines, phosphatidylethanolamines) with long and polyunsaturated acyl chains were more abundant in pHu+ than in pHu- while the lysophosphatidylcholines and lysophosphatidylethanolamines, known to be associated with starch, were observed in higher quantity in the serum of the pHu- line. Finally, the concentration of the sterols and the ceramides, belonging to the sphingolipids class, were higher in the pHu+ and pHu-, respectively. Furthermore, orthogonal partial least-squares analyses highlighted a set of 68 lipids explaining 77% of the differences between the two broilers lines (R2Y = 0.77, Q2 = 0.67). Among these lipids, a subset of 40 predictors of the pHu value was identified with a Root Mean Squared Error of Estimation of 0.18 pH unit (R2Y = 0.69 and Q2 = 0.62). The predictive model of the pHu value was externally validated on 68 birds with a Root Mean Squared Error of Prediction of 0.25 pH unit. Conclusion: The sets of molecules identified will be useful for a better understanding of relationship between serum lipid profile and meat quality, and will contribute to define easily accessible pHu biomarkers on live birds that could be useful in genetic selection.

3.
BMC Genom Data ; 23(1): 18, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35291935

RESUMO

BACKGROUND: Selection for feed efficiency is one of the best ways to decrease poultry production costs and environmental impacts. While literature on its genetic determinism is abundant, it is limited to one or a few periodic values over the animals' lifespans. With the development of new phenotyping tools, kinetics of growth and feed intake are now available, providing access to daily data on feed efficiency. In this study, over the course of 6 weeks, we described the kinetics of body weight (BW), average daily weight gain (ADG), feed intake (FI), and daily cumulative feed conversion ratio (DCFCR) using electronic feed stations. We then estimated the genetic parameters of daily data in two fast growing lines of chicken divergently selected for breast meat ultimate pH (heritability and genetic correlations with breast meat yield and pH). RESULTS: Birds from the line selected to have a more acidic meat (pHu-), were more efficient than those selected to have a less acidic meat (pHu+), with a 4.3% higher BW from d7 to d29 and 5.0% better feed efficiency from d12 to slaughter. The line effect for ADG and DCFCR appeared to be significant as early as d5, which is consistent with the early age at which metabolic differences between the two lines appear. Genetic parameters estimated within each line revealed different genetic determinisms of growth and feed efficiency, with a higher impact of maternal effects on BW during the growing phase (d10 to d20) in the pHu+ line and much higher heritability values of DCFCR during the finishing phase (d26-d42) in the pHu- line. CONCLUSION: Genetic profiles of daily performance highlighted the difference between both lines. Their behavior during dietary transitions reinforced the already known impact of these periods in the animals' lives. Based on the profiles of genetic parameters within each line, it seems feasible to identify early criteria for selecting feed efficiency, but they must be defined for each line, as the genetic determinism of these traits is line-dependent.


Assuntos
Galinhas , Músculo Esquelético , Animais , Peso Corporal/genética , Galinhas/genética , Concentração de Íons de Hidrogênio , Carne/análise , Músculo Esquelético/metabolismo , Aumento de Peso
4.
Front Vet Sci ; 9: 814054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198623

RESUMO

Recent research on free-range chickens shows that individual behavioral differences may link to range use. However, most of these studies explored individual behavioral differences only at one time point or during a short time window, assessed differences when animals were out of their social group and home environment (barn and range), and in specific tests or situations. Therefore, it is yet unclear how different behaviors relate to range use and how consistent these behaviors are at the individual level. To fill this gap, we here aimed to describe the behavioral budget of slow-growing male broiler chickens (S757N) when in their social group and home environment during the whole rearing period (from the second week of life to the twelfth week, before slaughter), and to relate observed behavioral differences to range use. For this, we followed a sample of individuals in two flocks (n = 60 focal chickens out of 200 chickens per flock), over two seasons, during three periods: before range access (from 14 to 25 days old), during early range access (first weeks of range access, from 37 to 53 days old), and during late range access (last weeks of range access, from 63 to 87 days old). By the end of each period, individual tests of exploration and social motivation were also performed, measuring exploration/activity and sociability propensities. Our results show that foraging (i.e., pecking and scratching at the ground) was the only behavior that correlated to range use for all three rearing periods, independent of the season. Foraging was also the only behavior that showed within-individual consistency from an early age and across the three rearing periods. Foraging may, therefore, serve as a useful behavioral predictor of range use in free-range broiler chickens. Our study increases the knowledge of how behaviors develop and relate to each other in a domesticated and intensely selected species, and improves our understanding of the biology of free-range broiler chickens. These findings can, ultimately, serve as a foundation to increase range use and improve chicken welfare.

5.
Sci Rep ; 11(1): 6253, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737689

RESUMO

When animals prefer to make efforts to obtain food instead of acquiring it from freely available sources, they exhibit what is called contrafreeloading. Recently, individual differences in behavior, such as exploration, were shown to be linked to how prone an individual may be to contrafreeload. In this work, our main objective was to test whether and how individual differences in range use of free-range broiler chickens (Gallus gallus domesticus) were related to the individual motivation to contrafreeload. We also verified whether other behavioral variations could relate to range use. To that aim, over three different periods (before range access, first weeks of range access, and last weeks of range access), chickens with different ranging levels (low and high rangers) were submitted to a contrafreeloading test and had different behaviors recorded (such as foraging, resting, locomotion) in their home environment. During the contrafreeloading test, chickens were conditioned to one chamber presenting a foraging substrate and mealworms, while in the other chamber, mealworms were freely available on the floor. During testing trials, chickens had access to both empty chambers, and the time spent in each chamber was quantified. On average, low rangers preferred the chamber where mealworms were easily accessible (without the foraging substrate), while high rangers preferred the chamber where mealworms were accessible with difficulty, showing greater contrafreeloading. Out of ten behaviors recorded in chickens' home environment, foraging was the only one that differed significantly between our two ranging groups, with low rangers foraging, on average, significantly less than high rangers. These results corroborate previous experiences suggesting that range use is probably linked to chickens' exploratory trait and suggest that individual differences in free-range broiler chickens are present even before range access. Increasing our knowledge of individual particularities is a necessary step to improve free-range chicken welfare on the farm.


Assuntos
Galinhas/fisiologia , Comportamento Exploratório/fisiologia , Comportamento Alimentar/psicologia , Motivação/fisiologia , Caminhada/fisiologia , Ração Animal , Animais , Meio Ambiente , Fazendas , Masculino , Tenebrio
6.
Poult Sci ; 100(4): 101010, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33652242

RESUMO

Poultry production currently relies on the use of soybean as the main protein and energy source. Reducing its proportion in poultry diets and partly replacing it with local feedstuffs would improve sustainability by reducing dependence on importations and the environmental impact of production. In this study, we evaluated the impact of replacing soybean by sunflower meal, fava bean, canola meal, and dried distillers grains with solubles on the performance of rapid and slow growing chickens. Animals were reared in groups and on the floor. Individual BW and feed intake data were collected throughout each animal's life, thanks to an electronic feed station. At 5 wk (for broilers) and 12 wk (for slow growing chickens), the birds were slaughtered to obtain carcass composition and meat quality data. Adaptation to the alternative diet was studied separately for each genotype. Firstly, we performed ANOVA with diet effect on daily data of individual BW, feed intake, and feed conversion ratio. Secondly, the variability of performances within the group was studied by ANOVA with effects of diet, period, and their interaction. Finally, correlations between daily performances and final performances at slaughter were calculated to understand the construction of final phenotypes and to identify early indicators of final performances. The results showed that the animals adapted well to the alternative diet, mean daily and final performances being mostly similar between the 2 diets for both genotypes (<3% on final BW). However, daily observations highlighted the critical importance of periods around dietary transitions by showing impacted performances for both genotypes. For example, feed conversion ratio of Label Rouge-alternative diet was 12 to 14% lower during the 3 d after transitions than during the 3 d before. It underlined the fact that adapting management of the batch to the alternative diet would be necessary. Correlations between daily and final performances showed that the slaughter performances of rapid growing chickens were mostly determined by BW whereas the main criterion was cumulative feed conversion for slow growing chickens. These correlations also suggested that reserves might be modified with the alternative diet, with rapid growing chickens giving rise to more glycogen reserves and less fat reserves.


Assuntos
Ração Animal , Galinhas , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Ingestão de Alimentos , Cinética
7.
Poult Sci ; 100(2): 1205-1212, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33518078

RESUMO

Sustainability of poultry farming relies on the development of more efficient and autonomous production systems in terms of feed supply. This implies a better integration of adaptive traits in breeding programs, including digestive efficiency, to favor the use of a wider variety of feedstuffs. The objective of the study was to better characterize the kinetics of development of the digestive tract in broilers, in relationship with digestive efficiency by measuring various digestive parameters as well as serum color. Absolute and relative growth of gastrointestinal tract organs were compared between 2 divergent chicken lines selected on digestive efficiency (AMEn) during 7 wk of development. We show that as early as 7 d of age, these 2 lines differs for several organs developments and that these differences remain visible later on. In addition, the allometry of the gizzard and intestine segments is different between the 2 lines, with efficient birds putting more effort in the upper part of the digestive tract during postnatal development and less-efficient birds putting more effort in the lower part of the gastrointestinal tract. Interestingly, we also showed that differences in serum pigmentation, which is a good biomarker for digestive capacity, could be a convenient diagnostic tool to discriminate between chickens with high or low digestive efficiency at early stages of development. In conclusion, this study showed that selection of chickens for AMEn had large impacts in gastrointestinal development including at early stages and is a valuable resource for further studies on the genetic and physiological control of the response of the animal to feed variations.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Cruzamento/normas , Galinhas/fisiologia , Digestão/fisiologia , Trato Gastrointestinal/crescimento & desenvolvimento , Ração Animal/análise , Animais , Cruzamento/métodos , Galinhas/sangue , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Dieta/veterinária , Feminino , Masculino
8.
PLoS One ; 15(5): e0232418, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32421690

RESUMO

Improving the digestive efficiency of broiler chickens (Gallus gallus) could reduce organic waste, increase the use of alternative feed not used for human consumption and reduce the impact of feed in production costs. By selecting chicken lines divergently for their digestive efficiency, we showed previously that digestive efficiency is under genetic control and that the two resulting divergent lines, D+ (high digestive efficiency or "digestibility +") and D- (low digestive efficiency or "digestibility -"), also differ for the abundance of specific bacteria in their caeca. Here we perform a more extensive census of the bacteria present in the digestive microbiota of 60 chickens selected for their low apparent metabolizable energy corrected for nitrogen balance (AMEn-) or high (AMEn+) digestive efficiency in a [D+ x D-] F8 progeny of 200 individuals. We sequenced the 16S rRNA genes of the ileal, jejunal and caecal microbiotas, and compared the compositions and predicted functions of microbiotas from the different intestinal segments for 20 AMEn+ and 19 AMEn- birds. The intestinal segment of origin was the main factor structuring the samples. The caecal microbiota was the most impacted by the differences in digestive efficiency, with 41 bacterial species with abundances differing between highly and poorly efficient birds. Furthermore, we predicted that the caecal microbiota of efficient birds might be enriched in genes contributing to the degradation of short chain fatty acids (SCFA) from non-starch polysaccharides. These results confirm the impact of the genetic selection led on digestibility on the caecal microbiota taxonomic composition. They open the way toward the identification of specific, causal genes of the host controlling variations in the abundances of bacterial taxons.


Assuntos
Galinhas/microbiologia , Microbioma Gastrointestinal/genética , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Biodiversidade , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Digestão/genética , Digestão/fisiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Intestinos/anatomia & histologia , Intestinos/microbiologia , Intestinos/fisiologia , Masculino , Filogenia , RNA Ribossômico 16S/genética , Seleção Genética
9.
Poult Sci ; 99(2): 702-707, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32036974

RESUMO

Improving the digestive efficiency of birds is becoming increasingly important with the diversification of feedstuffs used in poultry diets. Compared with time-consuming chemical analyses that were previously used to measure digestive efficiency, near-infrared spectroscopy has been a great advance as it was fast and thus allowed measurements to be taken from a large number of animals, as required for genetic studies. However, it still implies to rear the birds in cages to collect feces, which is questionable in terms of welfare. The purpose of this study was thus to establish whether the serum color could be used as a biomarker of digestive efficiency that would be easy and fast to measure on floor-reared animals. We first compared the serum color of 2 lines of chickens divergently selected for high or low digestive efficiency when fed with a wheat-based diet. Digestive efficiency was assessed by nitrogen-corrected apparent metabolizable energy. Color was assessed by the absorbance of the serum between 300 and 572 nm. Color differed between the 2 lines between 430 and 572 nm, which corresponds to the absorption zone of carotenoids such as lutein and zeaxanthin. In a second step, we estimated the heritability of serum color measurements and their genetic correlations with digestive efficiency. Taking these parameters into account, in our experimental conditions the best trait among those tested that can be used as a biomarker of digestive efficiency is serum absorbance at 492 nm, with a heritability estimate of 0.31 ± 0.09 and a genetic correlation with digestive efficiency of 0.84 ± 0.28.


Assuntos
Criação de Animais Domésticos/métodos , Galinhas/fisiologia , Digestão , Soro/química , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Biomarcadores/sangue , Galinhas/genética , Cor , Dieta/veterinária , Feminino , Hereditariedade , Masculino , Fenótipo , Seleção Genética
10.
Poult Sci ; 98(3): 1425-1431, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30325459

RESUMO

The increasing cost of conventional feedstuffs used in poultry diets has bolstered interest in genetic selection for digestive efficiency (DE) to improve the adaptation of the birds to various alternative feedstuffs. However, DE measurement through AMEn is time-consuming and constraining. To simplify selection for DE, the potential of serum composition to predict AMEn was evaluated based on 40 birds from two broiler lines (D+ and D-) divergently selected on the fecal AMEn of a difficult-to-digest wheat-based diet. Differences in serum coloration were suspected between the two lines, and thus a spectrophotometric analysis was carried out, revealing a significant difference in absorption between 430 nm and 516 nm, corresponding to the signature of orange-red lipophilic pigments such as xanthophylls. To go further, the liposoluble fraction of the serum was explored for its lipidome by mass spectrometry. Discriminant analysis revealed that a pattern of 10 metabolites, including zeaxanthin/lutein, can explain 82% of the lipidomic differences between the two lines. Colorimetry combined with lipidomics studies confirmed the relationship between digestive efficiency and serum composition, which opens up new possibilities for using it as a quick and easy proxy of digestive efficiency.


Assuntos
Galinhas/sangue , Digestão/fisiologia , Lipídeos/sangue , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Galinhas/genética , Galinhas/fisiologia , Colorimetria/veterinária , Dieta/veterinária , Digestão/genética , Fezes , Pigmentação , Espectrofotometria/veterinária , Triticum
11.
BMC Genomics ; 19(1): 928, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30545300

RESUMO

BACKGROUND: The sustainability of poultry farming relies on the development of more efficient and autonomous production systems in terms of feed supply. This implies a better integration of adaptive traits in breeding programs, including digestive efficiency, in order to favor the use of a wider variety of feedstuffs. The aim of the project was to improve the understanding of genes involved in digestive functions by characterizing the transcriptome of different sections of the digestive tract: the junction between the proventriculus and the gizzard, the gizzard, the gastroduodenal junction, and the jejunum. RESULTS: Total RNA from the four tissues were sequenced on a HiSeq2500 for six 23-day-old chickens from a second generation (F2) cross between two lines that were divergent for their digestive efficiency (D+/D-). Bioinformatics and biostatistics analyses of the RNA-seq data showed a total of 11,040 differentially expressed transcripts between the four tissues. In total, seven clusters of genes with markedly different expression profiles were identified. Functional analysis on gene groups was performed using "Gene Ontology" and semantic similarity. It showed a significant enrichment of body immune defenses in the jejunum, and an enrichment of transcriptional activity in the gizzard. Moreover, an interesting enrichment for neurohormonal control of muscle contraction was found for the two gizzard's junctions. CONCLUSION: This analysis allows us to draw the first molecular portrait of the different sections of the digestive tract, which will serve as a basis for future studies on the genetic and physiological control of the response of the animal to feed variations.


Assuntos
Galinhas/genética , Trato Gastrointestinal/metabolismo , Genômica , Animais , Perfilação da Expressão Gênica , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Análise de Sequência de RNA , Transcriptoma
12.
Sci Rep ; 8(1): 6678, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703927

RESUMO

The increasing cost of conventional feedstuffs has bolstered interest in genetic selection for digestive efficiency (DE), a component of feed efficiency, assessed by apparent metabolisable energy corrected to zero nitrogen retention (AMEn). However, its measurement is time-consuming and constraining, and its relationship with metabolic efficiency poorly understood. To simplify selection for this trait, we searched for indirect metabolic biomarkers through an analysis of the serum metabolome using nuclear magnetic resonance (1H NMR). A partial least squares (PLS) model including six amino acids and two derivatives from butyrate predicted 59% of AMEn variability. Moreover, to increase our knowledge of the molecular mechanisms controlling DE, we investigated 1H NMR metabolomes of ileal, caecal, and serum contents by fitting canonical sparse PLS. This analysis revealed strong associations between metabolites and DE. Models based on the ileal, caecal, and serum metabolome respectively explained 77%, 78%, and 74% of the variability of AMEn and its constitutive components (utilisation of starch, lipids, and nitrogen). In our conditions, the metabolites presenting the strongest associations with AMEn were proline in the serum, fumarate in the ileum and glucose in caeca. This study shows that serum metabolomics offers new opportunities to predict chicken DE.


Assuntos
Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Digestão , Conteúdo Gastrointestinal/química , Metaboloma , Soro/química , Animais , Galinhas , Espectroscopia de Ressonância Magnética
13.
Behav Genet ; 47(1): 114-124, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27604231

RESUMO

The genetic relationships between behavior and digestive efficiency were studied in 860 chickens from a cross between two lines divergently selected on digestive efficiency. At 2 weeks of age each chick was video-recorded in the home pen to characterize general activity and feeding behavior. Tonic immobility and open-field tests were also carried out individually to evaluate emotional reactivity (i.e. the propensity to express fear responses). Digestive efficiency was measured at 3 weeks. Genetic parameters of behavior traits were estimated. Birds were genotyped on 3379 SNP markers to detect QTLs. Heritabilities of behavioral traits were low, apart from tonic immobility (0.17-0.18) and maximum meal length (0.14). The genetic correlations indicated that the most efficient birds fed more frequently and were less fearful. We detected 14 QTL (9 for feeding behavior, 3 for tonic immobility, 2 for frequency of lying). Nine of them co-localized with QTL for efficiency, anatomy of the digestive tract, feed intake or microbiota composition. Four genes involved in fear reactions were identified in the QTL for tonic immobility on GGA1.


Assuntos
Galinhas/genética , Digestão , Medo , Comportamento Alimentar , Estudos de Associação Genética , Animais , Comportamento Animal , Imobilização , Padrões de Herança/genética , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável
14.
BMC Genomics ; 17: 329, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27142519

RESUMO

BACKGROUND: Meat type chickens have limited capacities to cope with high environmental temperatures, this sometimes leading to mortality on farms and subsequent economic losses. A strategy to alleviate this problem is to enhance adaptive capacities to face heat exposure using thermal manipulation (TM) during embryogenesis. This strategy was shown to improve thermotolerance during their life span. The aim of this study was to determine the effects of TM (39.5 °C, 12 h/24 vs 37.8 °C from d7 to d16 of embryogenesis) and of a subsequent heat challenge (32 °C for 5 h) applied on d34 on gene expression in the Pectoralis major muscle (PM). A chicken gene expression microarray (8 × 60 K) was used to compare muscle gene expression profiles of Control (C characterized by relatively high body temperatures, Tb) and TM chickens (characterized by a relatively low Tb) reared at 21 °C and at 32 °C (CHC and TMHC, respectively) in a dye-swap design with four comparisons and 8 broilers per treatment. Real-time quantitative PCR (RT-qPCR) was subsequently performed to validate differential expression in each comparison. Gene ontology, clustering and network building strategies were then used to identify pathways affected by TM and heat challenge. RESULTS: Among the genes differentially expressed (DE) in the PM (1.5 % of total probes), 28 were found to be differentially expressed between C and TM, 128 between CHC and C, and 759 between TMHC and TM. No DE gene was found between TMHC and CHC broilers. The majority of DE genes analyzed by RT-qPCR were validated. In the TM/C comparison, DE genes were involved in energy metabolism and mitochondrial function, cell proliferation, vascularization and muscle growth; when comparing heat-exposed chickens to their own controls, TM broilers developed more specific pathways than C, especially involving genes related to metabolism, stress response, vascularization, anti-apoptotic and epigenetic processes. CONCLUSIONS: This study improved the understanding of the long-term effects of TM on PM muscle. TM broilers displaying low Tb may have lower metabolic intensity in the muscle, resulting in decreased metabolic heat production, whereas modifications in vascularization may enhance heat loss. These specific changes could in part explain the better adaptation of TM broilers to heat.


Assuntos
Galinhas/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Músculos Peitorais/embriologia , Animais , Embrião de Galinha , Galinhas/genética , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Temperatura Alta , Desenvolvimento Muscular , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos
15.
Bone Rep ; 5: 43-50, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28326346

RESUMO

Skeletal integrity in meat-type chickens is affected by many factors including rapid growth rate, nutrition and genetics. To investigate the genetic basis of bone and mineral metabolism, a QTL detection study was conducted in an intercross between two lines of meat-type chickens divergently selected for their high (D +) or low (D -) digestive efficiency. Tibia size (length, diameter, volume) and ash content were determined at 3 weeks of age as well as phosphorus (P) retention and plasma concentration. Heritability of these traits and their genetic correlations with digestive efficiency were estimated. A QTL mapping study was performed using 3379 SNP markers. Tibia size, weight, ash content and breaking strength were highly heritable (0.42 to 0.61). Relative tibia diameter and volume as well as P retention were strongly and positively genetically correlated with digestive efficiency (0.57 to 0.80). A total of 35 QTL were identified (9 for tibia weight, 13 for tibia size, 5 for bone strength, 5 for bone mineralization, 2 for plasma P concentration and 1 for P retention). Six QTL were genome-wide significant, and 3 QTL for tibia relative volume, weight and ash weight on chromosome 6 were fixed, the positive allele coming from the D-line. For two QTL for ash content on chromosome 18 and relative tibia length on chromosome 26, the confidence intervals were small enough to identify potential candidate genes. These findings support the evidence of multiple genetic loci controlling bone and mineral metabolism. The identification of candidate genes may provide new perspectives in the understanding of bone regulation, even beyond avian species.

16.
Genet Sel Evol ; 47: 74, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26407557

RESUMO

BACKGROUND: Improving feed efficiency is a major goal in poultry production in order to reduce production costs, increase the possibility of using alternative feedstuffs and decrease the volume of manure. However, in spite of their economic and environmental impact, very few quantitative trait loci (QTL) have been reported on these traits. Thus, we undertook the detection of QTL on 820 meat-type chickens from a F2 cross between D- and D+ lines that were divergently selected on low or high digestive efficiency at 3 weeks of age. Birds were measured for growth between 0 and 23 days, feed intake and feed conversion ratio between 9 and 23 days, breast and abdominal fat yields at 23 days, and the anatomy of their digestive tract (density, relative weight and length of the duodenum, jejunum, ileum, and ratio of proventriculus to gizzard weight) was examined. To evaluate excretion traits, fresh and dry weight, water content, pH, nitrogen to phosphorus ratio from 0 to 23 days, and pH of gizzard and jejunum contents at 23 days were measured. A set of 3379 single nucleotide polymorphisms distributed on 28 Gallus gallus (GGA) autosomes, the Z chromosome and one unassigned linkage group was used for QTL detection. RESULTS: Using the QTLMap software developed for linkage analyses by interval mapping, we detected 16 QTL for feed intake, 13 for feed efficiency, 49 for anatomy-related traits, seven for growth, six for body composition and ten for excretion. Nine of these QTL were genome-wide significant (four for feed intake on GGA1, one for feed efficiency on GGA2, and four for anatomy on GGA1, 2, 3 and 4). GGA16, 19, and 26 carried many QTL for different types of traits that co-localize at the same position. CONCLUSIONS: This study identified several QTL regions that are involved in the control of digestive efficiency in chicken. Further studies are needed to identify the genes that underlie these effects, and to validate these in other commercial populations and for different breeding environments.


Assuntos
Galinhas/anatomia & histologia , Galinhas/crescimento & desenvolvimento , Locos de Características Quantitativas , Tecido Adiposo , Ração Animal , Animais , Peso Corporal , Galinhas/genética , Dieta , Fezes/química , Trato Gastrointestinal/anatomia & histologia , Trato Gastrointestinal/crescimento & desenvolvimento , Ligação Genética , Triticum/metabolismo
17.
PLoS One ; 10(8): e0135488, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26267269

RESUMO

OBJECTIVES: Feed efficiency and its digestive component, digestive efficiency, are key factors in the environmental impact and economic output of poultry production. The interaction between the host and intestinal microbiota has a crucial role in the determination of the ability of the bird to digest its food and to the birds' feed efficiency. We therefore investigated the phenotypic and genetic relationships between birds' efficiency and the composition of the cecal microbiota in a F2 cross between broiler lines divergently selected for their high or low digestive efficiency. METHODS: Analyses were performed on 144 birds with extreme feed efficiency values at 3 weeks, with feed conversion values of 1.41±0.05 and 2.02±0.04 in the efficient and non-efficient groups, respectively. The total numbers of Lactobacillus, L. salivarius, L. crispatus, C. coccoides, C. leptum and E. coli per gram of cecal content were measured. RESULTS: The two groups mainly differed in larger counts of Lactobacillus, L. salivarius and E. coli in less efficient birds. The equilibrium between bacterial groups was also affected, efficient birds showing higher C. leptum, C. coccoides and L. salivarius to E. coli ratios. The heritability of the composition of microbiota was also estimated and L. crispatus, C. leptum, and C. coccoides to E. coli ratios were moderately but significantly heritable (0.16 to 0.24). The coefficient of fecal digestive use of dry matter was genetically and positively correlated with L. crispatus, C. leptum, C. coccoides (0.50 to 0.76) and negatively with E. coli (-0.66). Lipid digestibility was negatively correlated with E. coli (-0.64), and AMEn positively correlated with C. coccoides and with the C. coccoides to Lactobacillus ratio (0.48 to 0.64). We also detected 14 Quantitative Trait Loci (QTL) for microbiota on the host genome, mostly on C. leptum and Lactobacillus. The QTL for C. leptum on GGA6 was close to genome-wide significance. This region mainly includes genes involved in anti-inflammatory responses and in the motility of the gastrointestinal tract.


Assuntos
Digestão/fisiologia , Microbiota/fisiologia , Animais , Galinhas , Escherichia coli/genética , Escherichia coli/fisiologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Lactobacillus/genética , Lactobacillus/fisiologia , Microbiota/genética , Locos de Características Quantitativas/genética
18.
PLoS One ; 9(9): e105339, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25180913

RESUMO

Fast-growing chickens have a limited ability to tolerate high temperatures. Thermal manipulation during embryogenesis (TM) has previously been shown to lower chicken body temperature (Tb) at hatching and to improve thermotolerance until market age, possibly resulting from changes in metabolic regulation. The aim of this study was to evaluate the long-term effects of TM (12 h/d, 39.5°C, 65% RH from d 7 to 16 of embryogenesis vs. 37.8°C, 56% RH continuously) and of a subsequent heat challenge (32°C for 5 h at 34 d) on the mRNA expression of metabolic genes and cell signaling in the Pectoralis major muscle and the liver. Gene expression was analyzed by RT-qPCR in 8 chickens per treatment, characterized by low Tb in the TM groups and high Tb in the control groups. Data were analyzed using the general linear model of SAS considering TM and heat challenge within TM as main effects. TM had significant long-term effects on thyroid hormone metabolism by decreasing the muscle mRNA expression of deiodinase DIO3. Under standard rearing conditions, the expression of several genes involved in the regulation of energy metabolism, such as transcription factor PGC-1α, was affected by TM in the muscle, whereas for other genes regulating mitochondrial function and muscle growth, TM seemed to mitigate the decrease induced by the heat challenge. TM increased DIO2 mRNA expression in the liver (only at 21°C) and reduced the citrate synthase activity involved in the Krebs cycle. The phosphorylation level of p38 Mitogen-activated-protein kinase regulating the cell stress response was higher in the muscle of TM groups compared to controls. In conclusion, markers of energy utilization and growth were either changed by TM in the Pectoralis major muscle and the liver by thermal manipulation during incubation as a possible long-term adaptation limiting energy metabolism, or mitigated during heat challenge.


Assuntos
Temperatura Corporal , Galinhas/crescimento & desenvolvimento , Desenvolvimento Embrionário , Fígado/metabolismo , Músculos/metabolismo , Animais , Embrião de Galinha , Galinhas/genética , Desenvolvimento Embrionário/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Insulina/metabolismo , Fígado/enzimologia , Músculos/enzimologia , Fosforilação , Proteínas Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Estresse Fisiológico , Fatores de Tempo
19.
Genet Sel Evol ; 46: 25, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24708200

RESUMO

BACKGROUND: Improving digestive efficiency is a major goal in poultry production, to reduce production costs, make possible the use of alternative feedstuffs and decrease the volume of manure produced. Since measuring digestive efficiency is difficult, identifying molecular markers associated with genes controlling this trait would be a valuable tool for selection. Detection of QTL (quantitative trait loci) was undertaken on 820 meat-type chickens in a F2 cross between D- and D+ lines divergently selected on low or high AMEn (apparent metabolizable energy value of diet corrected to 0 nitrogen balance) measured at three weeks in animals fed a low-quality diet. Birds were measured for 13 traits characterizing digestive efficiency (AMEn, coefficients of digestive utilization of starch, lipids, proteins and dry matter (CDUS, CDUL, CDUP, CDUDM)), anatomy of the digestive tract (relative weights of the proventriculus, gizzard and intestine and proventriculus plus gizzard (RPW, RGW, RIW, RPGW), relative length and density of the intestine (RIL, ID), ratio of proventriculus and gizzard to intestine weight (PG/I); and body weight at 23 days of age. Animals were genotyped for 6000 SNPs (single nucleotide polymorphisms) distributed on 28 autosomes, the Z chromosome and one unassigned linkage group. RESULTS: Nine QTL for digestive efficiency traits, 11 QTL for anatomy-related traits and two QTL for body weight at 23 days of age were detected. On chromosome 20, two significant QTL at the genome level co-localized for CDUS and CDUDM, i.e. two traits that are highly correlated genetically. Moreover, on chromosome 16, chromosome-wide QTL for AMEn, CDUS, CDUDM and CDUP, on chromosomes 23 and 26, chromosome-wide QTL for CDUS, on chromosomes 16 and 26, co-localized QTL for digestive efficiency and the ratio of intestine length to body weight and on chromosome 27 a chromosome-wide QTL for CDUDM were identified. CONCLUSIONS: This study identified several regions of the chicken genome involved in the control of digestive efficiency. Further studies are necessary to identify the underlying genes and to validate these in commercial populations and breeding environments.


Assuntos
Ração Animal , Galinhas/genética , Locos de Características Quantitativas , Fenômenos Fisiológicos da Nutrição Animal , Animais , Peso Corporal , Galinhas/anatomia & histologia , Galinhas/fisiologia , Feminino , Trato Gastrointestinal/anatomia & histologia , Trato Gastrointestinal/fisiologia , Genoma , Masculino , Triticum/metabolismo
20.
BMC Genet ; 12: 71, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21846409

RESUMO

BACKGROUND: Poultry production has been widely criticized for its negative environmental impact related to the quantity of manure produced and to its nitrogen and phosphorus content. In this study, we investigated which traits related to excretion could be used to select chickens for lower environmental pollution.The genetic parameters of several excretion traits were estimated on 630 chickens originating from 2 chicken lines divergently selected on apparent metabolisable energy corrected for zero nitrogen (AMEn) at constant body weight. The quantity of excreta relative to feed consumption (CDUDM), the nitrogen and phosphorus excreted, the nitrogen to phosphorus ratio and the water content of excreta were measured, and the consequences of such selection on performance and gastro-intestinal tract (GIT) characteristics estimated. The genetic correlations between excretion, GIT and performance traits were established. RESULTS: Heritability estimates were high for CDUDM and the nitrogen excretion rate (0.30 and 0.29, respectively). The other excretion measurements showed low to moderate heritability estimates, ranging from 0.10 for excreta water content to 0.22 for the phosphorus excretion rate. Except for the excreta water content, the CDUDM was highly correlated with the excretion traits, ranging from -0.64 to -1.00. The genetic correlations between AMEn or CDUDM and the GIT characteristics were very similar and showed that a decrease in chicken excretion involves an increase in weight of the upper part of the GIT, and a decrease in the weight of the small intestine. CONCLUSION: In order to limit the environmental impact of chicken production, AMEn and CDUDM seem to be more suitable criteria to include in selection schemes than feed efficiency traits.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Defecação/genética , Digestão , Trato Gastrointestinal/anatomia & histologia , Aves Domésticas/genética , Seleção Genética , Animais , Digestão/genética , Poluição Ambiental , Feminino , Masculino , Esterco , Nitrogênio , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...