Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 40(34): 5286-5301, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34247190

RESUMO

Cancer metastasis causes >90% of cancer deaths and remains a major treatment challenge. Here we deciphered the impact of tyrosine phosphorylation of MACC1, a causative driver for cancer metastasis, for cancer cell signaling and novel interventions to restrict cancer metastasis. We identified MACC1 as new MEK1 substrate. MEK1 directly phosphorylates MACC1, leading to accelerated and increased ERK1 activation. Mutating in silico predicted hierarchical MACC1 tyrosine phosphorylation sites abrogates MACC1-induced migration, invasion, and MET expression, a transcriptional MACC1 target. Targeting MEK1 by RNAi or clinically applicable MEK1 inhibitors AZD6244 and GSK1120212 reduces MACC1 tyrosine phosphorylation and restricts MACC1-induced metastasis formation in mice. Although MEK1 levels, contrary to MACC1, are not of prognostic relevance for CRC patients, MEK1 expression was found indispensable for MACC1-induced metastasis. This study identifies MACC1 as new MEK1 substrate for tyrosine phosphorylation decisively impacting cell motility, tumor growth, and metastasis. Thus, MAP kinase signaling is not linear leading to ERK activation, but branches at the level of MEK1. This fundamental finding opens new therapeutic options for targeting the MEK1/MACC1 axis as novel vulnerability in patients at high risk for metastasis. This might be extended from CRC to further solid tumor entities.


Assuntos
Neoplasias do Colo , Movimento Celular , Humanos , Proteína Quinase 3 Ativada por Mitógeno , Fosforilação , Processamento de Proteína Pós-Traducional , Piridonas , Pirimidinonas , Transdução de Sinais
2.
Cell Mol Life Sci ; 78(7): 3525-3542, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33469705

RESUMO

Metastasis Associated in Colon Cancer 1 (MACC1) is a novel prognostic, predictive and causal biomarker for tumor progression and metastasis in many cancer types, including colorectal cancer. Besides its clinical value, little is known about its molecular function. Its similarity to SH3BP4, involved in regulating uptake and recycling of transmembrane receptors, suggests a role of MACC1 in endocytosis. By exploring the MACC1 interactome, we identified the clathrin-mediated endocytosis (CME)-associated proteins CLTC, DNM2 and AP-2 as MACC1 binding partners. We unveiled a MACC1-dependent routing of internalized transferrin receptor towards recycling. Elevated MACC1 expression caused also the activation and internalization of EGFR, a higher rate of receptor recycling, as well as earlier and stronger receptor activation and downstream signaling. These effects are limited by deletion of CME-related protein interaction sites in MACC1. Thus, MACC1 regulates CME and receptor recycling, causing increased growth factor-mediated downstream signaling and cell proliferation. This novel mechanism unveils potential therapeutic intervention points restricting MACC1-driven metastasis.


Assuntos
Clatrina/metabolismo , Neoplasias Colorretais/patologia , Endocitose , Regulação Neoplásica da Expressão Gênica , Receptores da Transferrina/metabolismo , Transativadores/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Camundongos , Proteoma/análise , Proteoma/metabolismo , Receptores da Transferrina/genética , Transativadores/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Cell Sci ; 132(17)2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31391242

RESUMO

The muscle-specific RING-finger protein MuRF1 (also known as TRIM63) constitutes a bona fide ubiquitin ligase that routes proteins like several different myosin heavy chain proteins (MyHC) to proteasomal degradation during muscle atrophy. In two unbiased screens, we identified DCAF8 as a new MuRF1-binding partner. MuRF1 physically interacts with DCAF8 and both proteins localize to overlapping structures in muscle cells. Importantly, similar to what is seen for MuRF1, DCAF8 levels increase during atrophy, and the downregulation of either protein substantially impedes muscle wasting and MyHC degradation in C2C12 myotubes, a model system for muscle differentiation and atrophy. DCAF proteins typically serve as substrate receptors for cullin 4-type (Cul4) ubiquitin ligases (CRL), and we demonstrate that DCAF8 and MuRF1 associate with the subunits of such a protein complex. Because genetic downregulation of DCAF8 and inhibition of cullin activity also impair myotube atrophy in C2C12 cells, our data imply that the DCAF8 promotes muscle wasting by targeting proteins like MyHC as an integral substrate receptor of a Cul4A-containing ring ubiquitin ligase complex (CRL4A).This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células COS , Proteínas de Transporte , Chlorocebus aethiops , Humanos , Camundongos , Atrofia Muscular/enzimologia , Ratos , Transfecção
4.
Biochem J ; 476(5): 783-794, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30755463

RESUMO

Type IV P-type ATPases (P4 ATPases) are lipid flippases that catalyze phospholipid transport from the exoplasmic to the cytoplasmic leaflet of cellular membranes, but the mechanism by which they recognize and transport phospholipids through the lipid bilayer remains unknown. In the present study, we succeeded in purifying recombinant aminophospholipid ATPase 2 (ALA2), a member of the P4 ATPase subfamily in Arabidopsis thaliana, in complex with the ALA-interacting subunit 5 (ALIS5). The ATP hydrolytic activity of the ALA2-ALIS5 complex was stimulated in a highly specific manner by phosphatidylserine. Small changes in the stereochemistry or the functional groups of the phosphatidylserine head group affected enzymatic activity, whereas alteration in the length and composition of the acyl chains only had minor effects. Likewise, the enzymatic activity of the ALA2-ALIS5 complex was stimulated by both mono- and di-acyl phosphatidylserines. Taken together, the results identify the lipid head group as the key structural element for substrate recognition by the P4 ATPase.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Fosfatidilserinas/química , Proteínas de Transferência de Fosfolipídeos/química , Adenosina Trifosfatases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fosfatidilserinas/genética , Proteínas de Transferência de Fosfolipídeos/genética , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
5.
J Biol Chem ; 290(10): 6243-55, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25593311

RESUMO

The enzyme ScHxk2 of Saccharomyces cerevisiae is a dual-function hexokinase that besides its catalytic role in glycolysis is involved in the transcriptional regulation of glucose-repressible genes. Relief from glucose repression is accompanied by the phosphorylation of the nuclear fraction of ScHxk2 at serine 15 and the translocation of the phosphoenzyme into the cytosol. Different studies suggest different serine/threonine protein kinases, Ymr291w/Tda1 or Snf1, to accomplish ScHxk2-S15 phosphorylation. The current paper provides evidence that Ymr291w/Tda1 is essential for that modification, whereas protein kinases Ydr477w/Snf1, Ynl307c/Mck1, Yfr014c/Cmk1, and Ykl126w/Ypk1, which are co-purified during Ymr291w/Tda1 tandem affinity purification, as well as protein kinase PKA and PKB homolog Sch9 are dispensable. Taking into account the detection of a significantly higher amount of the Ymr291w/Tda1 protein in cells grown in low-glucose media as compared with a high-glucose environment, Ymr291w/Tda1 is likely to contribute to glucose signaling in S. cerevisiae on the level of ScHxk2-S15 phosphorylation in a situation of limited external glucose availability. The evolutionary conservation of amino acid residue serine 15 in yeast hexokinases and its phosphorylation is illustrated by the finding that YMR291W/TDA1 of S. cerevisiae and the homologous KLLA0A09713 gene of Kluyveromyces lactis allow for cross-complementation of the respective protein kinase single-gene deletion strains.


Assuntos
Glucose/metabolismo , Glicólise , Hexoquinase/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Regulação Fúngica da Expressão Gênica , Hexoquinase/biossíntese , Hexoquinase/metabolismo , Isoenzimas/genética , Kluyveromyces , Fosforilação , Proteínas Serina-Treonina Quinases/biossíntese , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/genética , Transdução de Sinais/genética , Especificidade por Substrato
6.
J Proteome Res ; 13(6): 3016-26, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24730562

RESUMO

Ubiquitination is behind most cellular processes, with ubiquitin substrates being regulated variously according to the number of covalently conjugated ubiquitin molecules and type of chain formed. Here we report the first mammalian system for ubiquitin proteomics allowing direct validation of the MS-identified proteins. We created a transgenic mouse expressing biotinylated ubiquitin and demonstrate its use for the isolation of ubiquitinated proteins from liver and other tissues. The specificity and strength of the biotin-avidin interaction allow very stringent washes, so only proteins conjugated to ubiquitin are isolated. In contrast with recently available antibody-based approaches, our strategy allows direct validation by immunoblotting, therefore revealing the type of ubiquitin chains (mono or poly) formed in vivo. We also identify the conjugating E2 enzymes that are ubiquitin-loaded in the mouse tissue. Furthermore, our strategy allows the identification of candidate cysteine-ubiquitinated proteins, providing a strategy to identify those on a proteomic scale. The novel in vivo system described here allows broad access to tissue-specific ubiquitomes and can be combined with established mouse disease models to investigate ubiquitin-dependent therapeutical approaches.


Assuntos
Fígado/metabolismo , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação , Animais , Biotinilação , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Proteoma/metabolismo
7.
Chem Biol ; 21(4): 470-480, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24631123

RESUMO

The specific roles that immunoproteasome variants play in MHC class I antigen presentation are unknown at present. To investigate the biochemical properties of different immunoproteasome forms and unveil the molecular mechanisms of PA28 activity, we performed in vitro degradation of full-length proteins by 20S, 26S, and PA28αß-20S immunoproteasomes and analyzed the spectrum of peptides released. Notably, PA28αß-20S immunoproteasomes hydrolyze proteins at the same low rates as 20S alone, which is in line with PA28, neither stimulating nor preventing entry of unfolded polypeptides into the core particle. Most importantly, binding of PA28αß to 20S greatly reduces the size of proteasomal products and favors the release of specific, more hydrophilic, longer peptides. Hence, PA28αß may either allosterically modify proteasome active sites or act as a selective "smart" sieve that controls the efflux of products from the 20S proteolytic chamber.


Assuntos
Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Regulação Alostérica , Domínio Catalítico , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Complexo de Endopeptidases do Proteassoma/isolamento & purificação , Espectrometria de Massas em Tandem
8.
Mol Cell Proteomics ; 13(3): 860-75, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24434903

RESUMO

The analysis of glucose signaling in the Crabtree-positive eukaryotic model organism Saccharomyces cerevisiae has disclosed a dual role of its hexokinase ScHxk2, which acts as a glycolytic enzyme and key signal transducer adapting central metabolism to glucose availability. In order to identify evolutionarily conserved characteristics of hexokinase structure and function, the cellular response of the Crabtree-negative yeast Kluyveromyces lactis to rag5 null mutation and concomitant deficiency of its unique hexokinase KlHxk1 was analyzed by means of difference gel electrophoresis. In total, 2,851 fluorescent spots containing different protein species were detected in the master gel representing all of the K. lactis proteins that were solubilized from glucose-grown KlHxk1 wild-type and mutant cells. Mass spectrometric peptide analysis identified 45 individual hexokinase-dependent proteins related to carbohydrate, short-chain fatty acid and tricarboxylic acid metabolism as well as to amino acid and protein turnover, but also to general stress response and chromatin remodeling, which occurred as a consequence of KlHxk1 deficiency at a minimum 3-fold enhanced or reduced level in the mutant proteome. In addition, three proteins exhibiting homology to 2-methylcitrate cycle enzymes of S. cerevisiae were detected at increased concentrations, suggesting a stimulation of pyruvate formation from amino acids and/or fatty acids. Experimental validation of the difference gel electrophoresis approach by post-lysis dimethyl labeling largely confirmed the abundance changes detected in the mutant proteome via the former method. Taking into consideration the high proportion of identified hexokinase-dependent proteins exhibiting increased proteomic levels, KlHxk1 is likely to have a repressive function in a multitude of metabolic pathways. The proteomic alterations detected in the mutant classify KlHxk1 as a multifunctional enzyme and support the view of evolutionary conservation of dual-role hexokinases even in organisms that are less specialized than S. cerevisiae in terms of glucose utilization.


Assuntos
Proteínas Fúngicas/metabolismo , Glucose/farmacologia , Hexoquinase/deficiência , Kluyveromyces/efeitos dos fármacos , Kluyveromyces/enzimologia , Proteoma/metabolismo , Proteômica , Carbono/farmacologia , Eletroforese em Gel Bidimensional , Ontologia Genética , Hexoquinase/metabolismo , Kluyveromyces/crescimento & desenvolvimento , Redes e Vias Metabólicas/efeitos dos fármacos , Mutação/genética , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...