Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38763781

RESUMO

Macrophages are present in almost all organs. Apart from being immune sentinels, tissue-resident macrophages (TRMs) have organ-specific functions that require a specialized cellular metabolism to maintain homeostasis. In addition, organ-dependent metabolic adaptations of TRMs appear to be fundamentally distinct in homeostasis and in response to a challenge, such as infection or injury. Moreover, TRM function becomes aberrant with advancing age, contributing to inflammaging and organ deterioration, and a metabolic imbalance may underlie TRM immunosenescence. Here, we outline current understanding of the particular metabolic states of TRMs across organs and the relevance for their function. Moreover, we discuss the concomitant aging-related decline in metabolic plasticity and functions of TRMs, highlighting potential novel therapeutic avenues to promote healthy aging.

2.
Redox Biol ; 68: 102957, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977043

RESUMO

Progressive respiratory failure is the primary cause of death in the coronavirus disease 2019 (COVID-19) pandemic. It is the final outcome of the acute respiratory distress syndrome (ARDS), characterized by an initial exacerbated inflammatory response, metabolic derangement and ultimate tissue scarring. A positive balance of cellular energy may result crucial for the recovery of clinical COVID-19. Hence, we asked if two key pathways involved in cellular energy generation, AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) signaling and fatty acid oxidation (FAO) could be beneficial. We tested the drugs metformin (AMPK activator) and baicalin (CPT1A activator) in different experimental models mimicking COVID-19 associated inflammation in lung and kidney. We also studied two different cohorts of COVID-19 patients that had been previously treated with metformin. These drugs ameliorated lung damage in an ARDS animal model, while activation of AMPK/ACC signaling increased mitochondrial function and decreased TGF-ß-induced fibrosis, apoptosis and inflammation markers in lung epithelial cells. Similar results were observed with two indole derivatives, IND6 and IND8 with AMPK activating capacity. Consistently, a reduced time of hospitalization and need of intensive care was observed in COVID-19 patients previously exposed to metformin. Baicalin also mitigated the activation of pro-inflammatory bone marrow-derived macrophages (BMDMs) and reduced kidney fibrosis in two animal models of kidney injury, another key target of COVID-19. In human epithelial lung and kidney cells, both drugs improved mitochondrial function and prevented TGF-ß-induced renal epithelial cell dedifferentiation. Our results support that favoring cellular energy production through enhanced FAO may prove useful in the prevention of COVID-19-induced lung and renal damage.


Assuntos
COVID-19 , Metformina , Síndrome do Desconforto Respiratório , Animais , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo , Rim/metabolismo , Pulmão/metabolismo , Inflamação/tratamento farmacológico , Fator de Crescimento Transformador beta , Fibrose , Ácidos Graxos
3.
Life Sci Alliance ; 6(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37487638

RESUMO

Tubulointerstitial fibrosis is the common pathological substrate for many etiologies leading to chronic kidney disease. Although perturbations in the circadian rhythm have been associated with renal disease, the role of the molecular clock in the pathogenesis of fibrosis remains incompletely understood. We investigated the relationship between the molecular clock and renal damage in experimental models of injury and fibrosis (unilateral ureteral obstruction, folic acid, and adenine nephrotoxicity), using genetically modified mice with selective deficiencies of the clock components Bmal1, Clock, and Cry We found that the molecular clock pathway was enriched in damaged tubular epithelial cells with marked metabolic alterations. In human tubular epithelial cells, TGFß significantly altered the expression of clock components. Although Clock played a role in the macrophage-mediated inflammatory response, the combined absence of Cry1 and Cry2 was critical for the recruitment of neutrophils, correlating with a worsening of fibrosis and with a major shift in the expression of metabolism-related genes. These results support that renal damage disrupts the kidney peripheral molecular clock, which in turn promotes metabolic derangement linked to inflammatory and fibrotic responses.


Assuntos
Adenina , Rim , Humanos , Animais , Camundongos , Ritmo Circadiano , Células Epiteliais , Macrófagos
4.
Front Mol Biosci ; 10: 1161036, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377862

RESUMO

Background: Chronic kidney disease (CKD) is characterized by the progressive and irreversible deterioration of kidney function and structure with the appearance of renal fibrosis. A significant decrease in mitochondrial metabolism, specifically a reduction in fatty acid oxidation (FAO) in tubular cells, is observed in tubulointerstitial fibrosis, whereas FAO enhancement provides protection. Untargeted metabolomics offers the potential to provide a comprehensive analysis of the renal metabolome in the context of kidney injury. Methodology: Renal tissue from a carnitine palmitoyl transferase 1a (Cpt1a) overexpressing mouse model, which displays enhanced FAO in the renal tubule, subjected to folic acid nephropathy (FAN) was studied through a multiplatform untargeted metabolomics approach based on LC-MS, CE-MS and GC-MS analysis to achieve the highest coverage of the metabolome and lipidome affected by fibrosis. The expression of genes related to the biochemical routes showing significant changes was also evaluated. Results: By combining different tools for signal processing, statistical analysis and feature annotation, we were able to identify variations in 194 metabolites and lipids involved in many metabolic routes: TCA cycle, polyamines, one-carbon metabolism, amino acid metabolism, purine metabolism, FAO, glycerolipids and glycerophospholipids synthesis and degradation, glycosphingolipids interconversion, and sterol metabolism. We found several metabolites strongly altered by FAN, with no reversion induced by Cpt1a overexpression (v.g. citric acid), whereas other metabolites were influenced by CPT1A-induced FAO (v.g. glycine-betaine). Conclusion: It was implemented a successful multiplatform metabolomics approach for renal tissue analysis. Profound metabolic changes accompany CKD-associated fibrosis, some associated with tubular FAO failure. These results highlight the importance of addressing the crosstalk between metabolism and fibrosis when undertaking studies attempting to elucidate the mechanism of CKD progression.

5.
FEBS Open Bio ; 13(7): 1154-1163, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36723270

RESUMO

Fibrosis driven by excessive accumulation of extracellular matrix (ECM) is the hallmark of chronic kidney disease (CKD). Myofibroblasts, which are the cells responsible for ECM production, are activated by cross talk with injured proximal tubule and immune cells. Emerging evidence suggests that alterations in metabolism are not only a feature of but also play an influential role in the pathogenesis of renal fibrosis. The application of omics technologies to cell-tracing animal models and follow-up functional data suggest that cell-type-specific metabolic shifts have particular roles in the fibrogenic response. In this review, we cover the main metabolic reprogramming outcomes in renal fibrosis and provide a future perspective on the field of renal fibrometabolism.


Assuntos
Fibrose , Insuficiência Renal Crônica , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/fisiopatologia , Fibrose/complicações , Fibrose/metabolismo , Fibrose/patologia , Fibrose/fisiopatologia , Humanos , Animais , Fosforilação Oxidativa , Glucose/metabolismo , Glutamina/metabolismo , Ácidos Graxos/metabolismo
6.
Immunity ; 56(3): 516-530.e9, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36738738

RESUMO

In vitro studies have associated oxidative phosphorylation (OXPHOS) with anti-inflammatory macrophages, whereas pro-inflammatory macrophages rely on glycolysis. However, the metabolic needs of macrophages in tissues (TMFs) to fulfill their homeostatic activities are incompletely understood. Here, we identified OXPHOS as the highest discriminating process among TMFs from different organs in homeostasis by analysis of RNA-seq data in both humans and mice. Impairing OXPHOS in TMFs via Tfam deletion differentially affected TMF populations. Tfam deletion resulted in reduction of alveolar macrophages (AMs) due to impaired lipid-handling capacity, leading to increased cholesterol content and cellular stress, causing cell-cycle arrest in vivo. In obesity, Tfam depletion selectively ablated pro-inflammatory lipid-handling white adipose tissue macrophages (WAT-MFs), thus preventing insulin resistance and hepatosteatosis. Hence, OXPHOS, rather than glycolysis, distinguishes TMF populations and is critical for the maintenance of TMFs with a high lipid-handling activity, including pro-inflammatory WAT-MFs. This could provide a selective therapeutic targeting tool.


Assuntos
Inflamação , Fosforilação Oxidativa , Humanos , Camundongos , Animais , Inflamação/metabolismo , Macrófagos/metabolismo , Homeostase , Lipídeos , Tecido Adiposo/metabolismo
7.
STAR Protoc ; 4(1): 101999, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36607813

RESUMO

Metabolic derangement is a key culprit in kidney pathophysiology. Organoids have emerged as a promising in vitro tool for kidney research. Here, we present a fine-tuned protocol to analyze bioenergetics in single human induced-pluripotent-stem-cell (iPSC)-derived kidney organoids using Seahorse XF96. We describe the generation of self-organized three-dimensional kidney organoids, followed by preparation of organoids for Seahorse XF96 analysis. We then detail how to carry out stress tests to determine mitochondrial and glycolytic rates in single kidney organoids.


Assuntos
Células-Tronco Pluripotentes Induzidas , Rim Único , Humanos , Rim Único/metabolismo , Diferenciação Celular , Rim , Organoides , Metabolismo Energético
8.
Polymers (Basel) ; 14(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501504

RESUMO

The use of block copolymers as a sacrificial template has been demonstrated to be a powerful method for obtaining porous carbons as electrode materials in energy storage devices. In this work, a block copolymer of polystyrene and polyacrylonitrile (PS-b-PAN) has been used as a precursor to produce fibers by electrospinning and powdered carbons, showing high carbon yield (~50%) due to a low sacrificial block content (fPS ≈ 0.16). Both materials have been compared structurally (in addition to comparing their electrochemical behavior). The porous carbon fibers showed superior pore formation capability and exhibited a hierarchical porous structure, with small and large mesopores and a relatively high surface area (~492 m2/g) with a considerable quantity of O/N surface content, which translates into outstanding electrochemical performance with excellent cycle stability (close to 100% capacitance retention after 10,000 cycles) and high capacitance value (254 F/g measured at 1 A/g).

9.
Ann Transl Med ; 10(15): 835, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36034978

RESUMO

Background: The long-noncoding RNA colorectal neoplasia differentially expressed (CRNDE) gene has been found to be upregulated in several solid tumors. Whether CRNDE affects osteosarcoma (OS) and its underling mechanism remains unknown. Methods: Tumor tissues and corresponding normal tissues were collected from 45 patients with OS. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was applied to determine lncRNA CRNDE level in the tissues. Participants were divided into a high CRNDE group and a low CRNDE group according to the median value of lncRNA CRNDE expression detected by in situ hybridization (ISH). The differences between high and low expression of lncRNA CRNDE in patients were compared clinically by chi-square test. Kaplan-Meier survival analysis was applied to analyze the relationship between lncRNA CRNDE expression and patient survival. Subsequently, silencing or overexpression of lncRNA CRNDE were performed in MG63 and 143B cell lines, qRT-PCR was applied to verify the expression of lncRNA CRNDE, miR-136-5p, and MRP9; dual-luciferase reporter assay was used to evaluate the targeting relationship between miR-136-5p, lncRNA CRNDE, and Cell Counting Kit-8 (CCK8), wound-healing, and Transwell assays were used to analyze for cell proliferation, migration, and invasion, respectively, and western blot was used to detect expression in cells. Results: The expression of CRNDE in OS tissues was higher than that in normal tissues. High lncRNA CRNDE expression was significantly associated with clinical stage, lung metastasis, and poor prognosis in OS patients. Additionally, overexpression of lncRNA CRNDE promoted proliferation and migration of OS cells. Bioinformatics analysis showed that lncRNA CRNDE competitively inhibited miR-136-5p through acting as a competitive endogenous RNA (ceRNA). It was also revealed that miR-136-5p is a binding target gene of lncRNA CRNDE and that MRP9 is involved in this process as a downstream target gene of miR-136-5p. Conclusions: The lncRNA CRNDE promotes the proliferation and migration of OS cells by regulating the miR-136-5p/MRP9 pathway, and lncRNA CRNDE can be a significant marker of OS prognosis.

10.
Antioxidants (Basel) ; 11(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35883847

RESUMO

Acute kidney injury (AKI) and chronic kidney disease (CKD) are interconnected conditions, and CKD is projected to become the fifth leading global cause of death by 2040. New therapeutic approaches are needed. Mitochondrial dysfunction and oxidative stress have emerged as drivers of kidney injury in acute and chronic settings, promoting the AKI-to-CKD transition. In this work, we review the role of mitochondrial dysfunction and oxidative stress in AKI and CKD progression and discuss novel therapeutic approaches. Specifically, evidence for mitochondrial dysfunction in diverse models of AKI (nephrotoxicity, cytokine storm, and ischemia-reperfusion injury) and CKD (diabetic kidney disease, glomerulopathies) is discussed; the clinical implications of novel information on the key role of mitochondria-related transcriptional regulators peroxisome proliferator-activated receptor gamma coactivator 1-alpha, transcription factor EB (PGC-1α, TFEB), and carnitine palmitoyl-transferase 1A (CPT1A) in kidney disease are addressed; the current status of the clinical development of therapeutic approaches targeting mitochondria are updated; and barriers to the clinical development of mitochondria-targeted interventions are discussed, including the lack of clinical diagnostic tests that allow us to categorize the baseline renal mitochondrial dysfunction/mitochondrial oxidative stress and to monitor its response to therapeutic intervention. Finally, key milestones for further research are proposed.

11.
Polymers (Basel) ; 14(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35335500

RESUMO

Epoxy resins are thermosets with interesting physicochemical properties for numerous engineering applications, and considerable efforts have been made to improve their performance by adding nanofillers to their formulations. MXenes are one of the most promising functional materials to use as nanofillers. They have attracted great interest due to their high electrical and thermal conductivity, hydrophilicity, high specific surface area and aspect ratio, and chemically active surface, compatible with a wide range of polymers. The use of MXenes as nanofillers in epoxy resins is incipient; nevertheless, the literature indicates a growing interest due to their good chemical compatibility and outstanding properties as composites, which widen the potential applications of epoxy resins. In this review, we report an overview of the recent progress in the development of MXene/epoxy nanocomposites and the contribution of nanofillers to the enhancement of properties. Particularly, their application for protective coatings (i.e., anticorrosive and friction and wear), electromagnetic-interference shielding, and composites is discussed. Finally, a discussion of the challenges in this topic is presented.

12.
Exp Mol Med ; 54(3): 226-238, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35246616

RESUMO

Cardiovascular disease is an important cause of death in patients with chronic kidney disease (CKD). Protein-bound uremic toxins, such as p-cresyl and indoxyl sulfate (IS), are poorly removed during hemodialysis, leading to vascular endothelial dysfunction and leukocyte extravasation. These processes can be related to dynamic adhesion structures called podosomes. Several studies have indicated the role of integrin-linked kinase (ILK) in the accumulation of integrin-associated proteins in podosomes. Here, we investigated the involvement of ILK and podosome formation in the adhesion and extravasation of monocytes under p-cresol (pc) and IS exposure. Incubation of THP-1 human monocyte cells with these toxins upregulated ILK kinase activity. Together, both toxins increased cell adhesion, podosome formation, extracellular matrix degradation, and migration of THP-1 cells, whereas ILK depletion with specific small interfering RNAs suppressed these processes. Interestingly, F-actin colocalized with cortactin in podosome cores, while ILK was colocalized in podosome rings under toxin stimulation. Podosome Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) and AKT protein depletion demonstrated that monocyte adhesion depends on podosome formation and that the ILK/AKT signaling pathway is involved in these processes. Ex vivo experiments showed that both toxins induced adhesion and podosome formation in leukocytes from wild-type mice, whereas these effects were not observed in leukocytes of conditional ILK-knockdown animals. In summary, under pc and IS stimulation, monocytes increase podosome formation and transmigratory capacity through an ILK/AKT signaling pathway-dependent mechanism, which could lead to vascular injury. Therefore, ILK could be a potential therapeutic target for the treatment of vascular damage associated with CKD.


Assuntos
Podossomos , Proteínas Serina-Treonina Quinases , Animais , Adesão Celular , Cresóis , Proteínas do Citoesqueleto/metabolismo , Humanos , Indicã/metabolismo , Indicã/farmacologia , Camundongos , Monócitos , Podossomos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células THP-1
13.
Kidney Int ; 100(6): 1165-1167, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34802556

RESUMO

The metabolic impairment of kidney tubular cells is a key mechanism underlying the pathophysiology of renal fibrosis. In particular, a drastic reduction in fatty acid oxidation is essentially responsible for the global energy failure occurring in the tubulointerstitial compartment. Piret et al. propose a novel transcriptional regulatory mechanism involving the decrease in the expression of Krüppel-like factor 15 in proximal tubular cells after kidney injury, which results in a major derangement of fatty acid oxidation.


Assuntos
Nefropatias , Túbulos Renais Proximais , Fibrose , Humanos , Rim/patologia , Nefropatias/patologia , Túbulos Renais Proximais/metabolismo , Metabolismo dos Lipídeos
14.
Polymers (Basel) ; 13(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34833220

RESUMO

The functionalization of smart polymers is opening a new perspective in catalysis, drug carriers and biosensors, due to the fact that they can modulate the response regarding conventional devices. This smart response could be affected by the presence of organometallic complexes in terms of interactions which could affect the physical chemical properties. In this sense, the thermoresponsive behavior of copolymers based on N-isopropylacrylamide (NIPAM) could be affected due to the presence of hydrophobic groups and concentration effect. In this work, the functionalization of a copolymer based on NIPAM and dopamine methacrylamide with different amounts of bis(cyclopentadienyl)titanium (IV) dichloride was carried out. The resulting materials were characterized, showing a clear idea about the mechanism of functionalization through FTIR spectroscopy. The thermoresponsive behavior was also studied for various polymeric solutions in water by UV-vis spectroscopy and calorimetry. The hydrophobic interactions promoted by the organometallic complex could affect the transition associated with the lower critical solution temperature (LCST), specifically, the segments composed by pure NIPAM. That fact would explain the reduction of the width of the LCST-transition, contrary to what could be expected. In addition, the hydrophobicity was tested by the contact angle and also DNA interactions.

15.
Life Sci Alliance ; 4(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34183444

RESUMO

As neurons age, they show a decrease in their ability to degrade proteins and membranes. Because undegraded material is a source of toxic products, defects in degradation are associated with reduced cell function and survival. However, there are very few dead neurons in the aging brain, suggesting the action of compensatory mechanisms. We show in this work that ageing neurons in culture show large multivesicular bodies (MVBs) filled with intralumenal vesicles (ILVs) and secrete more small extracellular vesicles than younger neurons. We also show that the high number of ILVs is the consequence of the accumulation of cholesterol in MVBs, which in turn is due to decreased levels of the cholesterol extruding protein NPC1. NPC1 down-regulation is the consequence of a combination of upregulation of the NPC1 repressor microRNA 33, and increased degradation, due to Akt-mTOR targeting of NPC1 to the phagosome. Although releasing more exosomes can be beneficial to old neurons, other cells, neighbouring and distant, can be negatively affected by the waste material they contain.


Assuntos
Colesterol/metabolismo , Exossomos/metabolismo , MicroRNAs/genética , Corpos Multivesiculares/metabolismo , Neurônios/citologia , Proteína C1 de Niemann-Pick/genética , Animais , Linhagem Celular , Senescência Celular , Regulação para Baixo , Células HEK293 , Humanos , Camundongos , Neurônios/metabolismo , Cultura Primária de Células , Ratos , Transdução de Sinais
16.
J Clin Invest ; 131(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465052

RESUMO

Chronic kidney disease (CKD) remains a major epidemiological, clinical, and biomedical challenge. During CKD, renal tubular epithelial cells (TECs) present a persistent inflammatory and profibrotic response. Fatty acid oxidation (FAO), the main source of energy for TECs, is reduced in kidney fibrosis and contributes to its pathogenesis. To determine whether gain of function in FAO (FAO-GOF) could protect from fibrosis, we generated a conditional transgenic mouse model with overexpression of the fatty acid shuttling enzyme carnitine palmitoyl-transferase 1A (CPT1A) in TECs. Cpt1a-knockin (CPT1A-KI) mice subjected to 3 models of renal fibrosis (unilateral ureteral obstruction, folic acid nephropathy [FAN], and adenine-induced nephrotoxicity) exhibited decreased expression of fibrotic markers, a blunted proinflammatory response, and reduced epithelial cell damage and macrophage influx. Protection from fibrosis was also observed when Cpt1a overexpression was induced after FAN. FAO-GOF restored oxidative metabolism and mitochondrial number and enhanced bioenergetics, increasing palmitate oxidation and ATP levels, changes that were also recapitulated in TECs exposed to profibrotic stimuli. Studies in patients showed decreased CPT1 levels and increased accumulation of short- and middle-chain acylcarnitines, reflecting impaired FAO in human CKD. We propose that strategies based on FAO-GOF may constitute powerful alternatives to combat fibrosis inherent to CKD.


Assuntos
Carnitina O-Palmitoiltransferase/biossíntese , Regulação Enzimológica da Expressão Gênica , Túbulos Renais/enzimologia , Insuficiência Renal Crônica/prevenção & controle , Animais , Carnitina O-Palmitoiltransferase/genética , Modelos Animais de Doenças , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Fibrose , Túbulos Renais/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Insuficiência Renal Crônica/enzimologia , Insuficiência Renal Crônica/genética
17.
Redox Biol ; 40: 101851, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33465566

RESUMO

Excessive accumulation of extracellular matrix (ECM) is the hallmark of fibrotic diseases. In the kidney, it is the final common pathway of prevalent diseases, leading to chronic renal failure. While cytokines such as TGF-ß play a fundamental role in myofibroblast transformation, recent work has shown that mitochondrial dysfunction and defective fatty acid oxidation (FAO), which compromise the main source of energy for renal tubular epithelial cells, have been proposed to be fundamental contributors to the development and progression of kidney fibrosis. MicroRNAs (miRNAs), which regulate gene expression post-transcriptionally, have been reported to control renal fibrogenesis. To identify miRNAs involved in the metabolic derangement of renal fibrosis, we performed a miRNA array screen in the mouse model of unilateral ureteral obstruction (UUO). MiR-150-5p and miR-495-3p were selected for their link to human pathology, their role in mitochondrial metabolism and their targeting of the fatty acid shuttling enzyme CPT1A. We found a 2- and 4-fold upregulation of miR-150-5p and miR-495-5p, respectively, in both the UUO and the folic acid induced nephropathy (FAN) models, while TGF-ß1 upregulated their expressions in the human renal tubular epithelial cell line HKC-8. These miRNAs synergized with TGF-ß regarding its pro-fibrotic effect by enhancing the fibrosis-associated markers Acta2, Col1α1 and Fn1. Bioenergetics studies showed a reduction of FAO-associated oxygen consumption rate (OCR) in HKC-8 cells in the presence of both miRNAs. Consistently, expression levels of their mitochondrial-related target genes CPT1A, PGC1α and the mitochondrial transcription factor A (TFAM), were reduced by half in renal epithelial cells exposed to these miRNAs. By contrast, we did not detect changes in mitochondrial mass and transmembrane potential (ΔÑ°m) or mitochondrial superoxide radical anion production. Our data support that miR-150 and miR-495 may contribute to renal fibrogenesis by aggravating the metabolic failure critically involved in tubular epithelial cells, ultimately leading to fibrosis.


Assuntos
MicroRNAs , Obstrução Ureteral , Fibrose , Humanos , Rim/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/patologia
18.
Polymers (Basel) ; 12(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255165

RESUMO

Polyetheretherketone (PEEK)/polyetherimide (PEI) blends (50/50, v/v) keeping the crystal phase of PEEK have been manufactured by alternate PEEK/PEI layer stacking. This strategy avoided the complete miscibility of both polymers, keeping layers of PEEK and PEI unmixed along the sample thickness, as well as promoting the formation of a smooth interfacial layer where PEEK and PEI were mixed. The properties of this interface after processing at molten state and different times was studied by DSC, DMA, and X-Ray synchrotron. These techniques allowed monitoring the evolution of glass transition, where isolated Tg's for both pristine polymers were observed even after long processing time. PEEK crystallinity slightly decreased during manufacturing, whereas PEEK crystal parameters did not vary. These observations show that, although the interface-the zone where both polymers are mixed-grew, layers with pristine polymers remained even after prolonged processing time. The preservation of the PEEK crystallinity was also observed in the mechanical properties of the multilayer PEEK/PEI films, which were compared with pristine PEEK and PEI films. Multilayer samples processed for shorter times rendered higher young modulus, tensile strength, and strain at break.

19.
Nefrología (Madrid) ; 40(5): 491-498, sept.-oct. 2020. ilus
Artigo em Espanhol | IBECS | ID: ibc-199029

RESUMO

Los microRNA (miRNA) son ARN endógenos de pequeño tamaño que regulan la expresión génica a través de la represión postranscripcional de sus ARN mensajeros diana. El estudio de los cambios en la expresión de ciertos miRNA en el riñón ha proporcionado evidencias sobre su papel patogénico y potencial terapéutico en nefrología. En esta revisión proponemos un abordaje de nanotecnología basado en la unión de análogos o inhibidores de miRNA formados por ácidos peptidonucleicos (PNA) a péptidos con una estructura transmembrana que es sensible a pH bajo, denominada pHLIP (del inglés pH [low] insertion peptide), apoyándonos en el concepto de que el pH acídico del microambiente tubular renal puede facilitar la concentración y la distribución del complejo pHLIP-PNA en este órgano. En este contexto hemos demostrado por primera vez que la administración dirigida de inhibidores de miR-33 con el sistema pHLIP previene eficazmente del desarrollo de fibrosis renal, abriendo las puertas de esta tecnología a nuevas estrategias de diagnóstico y tratamiento de enfermedades renales


MicroRNAs (miRNAs) are small endogenous RNAs that regulate gene expression through post-transcriptional repression of their target messenger RNAs. A study of changes in expression of certain miRNAs in the kidney has supplied evidence on their pathogenic role and therapeutic potential in nephrology. This review proposes a nanotechnology approach based on the binding of analogs or inhibitors of miRNAs formed by peptide nucleic acids (PNAs) to peptides with a transmembrane structure sensitive to a low pH, called pHLIPs (pH [low] insertion peptides). The review draws on the concept that an acidic pH in the microenvironment of the renal tubule may facilitate concentration and distribution of the pHLIP-PNA complex in this organ. In this context, we have demonstrated for the first time that targeted administration of miR-33 inhibitors with the pHLIP system effectively prevents the development of renal fibrosis, thus opening up this technology to new strategies for diagnosis and treatment of kidney diseases


Assuntos
Humanos , Animais , Masculino , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Ácidos Nucleicos Peptídicos/administração & dosagem , Nefropatias/terapia , Ribonucleotídeos/antagonistas & inibidores , Ácidos Nucleicos Peptídicos/uso terapêutico , Nanotecnologia/métodos , Acidose Tubular Renal , Nefropatias/diagnóstico
20.
Nefrologia (Engl Ed) ; 40(5): 491-498, 2020.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-32693933

RESUMO

MicroRNAs (miRNAs) are small endogenous RNAs that regulate gene expression through post-transcriptional repression of their target messenger RNAs. A study of changes in expression of certain miRNAs in the kidney has supplied evidence on their pathogenic role and therapeutic potential in nephrology. This review proposes a nanotechnology approach based on the binding of analogs or inhibitors of miRNAs formed by peptide nucleic acids (PNAs) to peptides with a transmembrane structure sensitive to a low pH, called pHLIPs (pH [low] insertion peptides). The review draws on the concept that an acidic pH in the microenvironment of the renal tubule may facilitate concentration and distribution of the pHLIP-PNA complex in this organ. In this context, we have demonstrated for the first time that targeted administration of miR-33 inhibitors with the pHLIP system effectively prevents the development of renal fibrosis, thus opening up this technology to new strategies for diagnosis and treatment of kidney diseases.


Assuntos
Rim , Proteínas de Membrana/fisiologia , MicroRNAs/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...