Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38668516

RESUMO

To study the spatiotemporal variability of particle-bound polycyclic aromatic hydrocarbons (PAHs) and assess their carcinogenic potential in six contrasting urban environments in Greece, a total of 305 filter samples were collected and analyzed. Sampling sites included a variety of urban background, traffic (Athens, Ioannina and Heraklion), rural (Xanthi) and near-port locations (Piraeus and Volos). When considering the sum of 16 U.S. EPA priority PAHs, as well as that of the six EU-proposed members, average concentrations observed across locations during summer varied moderately (0.4-2.2 ng m-3) and independently of the population of each site, with the highest values observed in the areas of Piraeus and Volos that are affected by port and industrial activities. Winter levels were significantly higher and more spatially variable compared to summer, with the seasonal enhancement ranging from 7 times in Piraeus to 98 times in Ioannina, indicating the large impact of PAH emissions from residential wood burning. Regarding benzo(a)pyrene (BaP), an IARC Group 1 carcinogen and the only EU-regulated PAH, the winter/summer ratios were 24-33 in Athens, Volos, Heraklion and Xanthi; 60 in Piraeus; and 480 in Ioannina, which is afflicted by severe wood-burning pollution events. An excellent correlation was observed between organic carbon (OC) and benzo(a)pyrene (BaP) during the cold period at all urban sites (r2 > 0.8) with stable BaP/OC slopes (0.09-0.14 × 10-3), highlighting the potential use of OC as a proxy for the estimation of BaP in winter conditions. The identified spatiotemporal contrasts, which were explored for the first time for PAHs at such a scale in the Eastern Mediterranean, provide important insights into sources and controlling atmospheric conditions and reveal large deviations in exposure risks among cities that raise the issue of environmental injustice on a national level.

2.
Environ Sci Technol ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38323876

RESUMO

Risk assessment of pesticide impacts on remote ecosystems makes use of model-estimated degradation in air. Recent studies suggest these degradation rates to be overestimated, questioning current pesticide regulation. Here, we investigated the concentrations of 76 pesticides in Europe at 29 rural, coastal, mountain, and polar sites during the agricultural application season. Overall, 58 pesticides were observed in the European atmosphere. Low spatial variation of 7 pesticides suggests continental-scale atmospheric dispersal. Based on concentrations in free tropospheric air and at Arctic sites, 22 pesticides were identified to be prone to long-range atmospheric transport, which included 15 substances approved for agricultural use in Europe and 7 banned ones. Comparison between concentrations at remote sites and those found at pesticide source areas suggests long atmospheric lifetimes of atrazine, cyprodinil, spiroxamine, tebuconazole, terbuthylazine, and thiacloprid. In general, our findings suggest that atmospheric transport and persistence of pesticides have been underestimated and that their risk assessment needs to be improved.

3.
Sci Total Environ ; 915: 170042, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38232850

RESUMO

Ultrafine particles (UFP) are recognized as an emerging pollutant able to induce serious health effects. However, quantitative information regarding the contributions of UFP sources is generally limited. This study evaluates statistical (k-means clustering) and receptor models (Positive Matrix Factorization - PMF) using particle number size distributions (PNSD), along with chemical speciation data, measured at an urban background supersite in Athens, Greece, aiming to characterize their sources. PNSD measurements (10-487 nm) were performed during three distinct periods (warm, cold, and lockdown cold). Traffic and residential biomass burning (BB) produced high UFP number concentrations (NUFP) in the cold period (+107 % compared to summer), while the lockdown restrictions reduced NUFP (-42 %). The five groups produced by cluster analysis that were common among periods were linked to high- and low-traffic, new particle formation (NPF), urban background and regional aerosols. PMF source apportionment identified 5 and 6 factors during warm and cold periods, respectively, indicating that traffic particles dominated NUFP (64-78 % in all periods), while accumulation-mode particles and volume concentrations were controlled by processed aerosol, and especially in the cold periods by BB emissions. A nucleation factor linked to NPF contributed 7-11 % to NUFP. Comparing the two cold periods (business-as-usual, lockdown), important lockdown reductions (-46 %) were seen for fresh traffic contributions to total number concentration (Ntotal). The impact of the source attributed to NPF also eroded (-41 % for Ntotal). Due to the large reduction (-47 % for Ntotal) observed also for the BB source during the lockdown (reduced wood usage due to a milder winter), the relative contributions of all sources did not change considerably (fractional reductions <7 % for Ntotal). The quantitative results, bolstered by source apportionment combining PNSD and online chemical composition measurements, indicate the potential to constrain UFP levels by regulating traffic and residential emissions, with a large upside for population exposure control.

4.
Sci Total Environ ; 903: 166592, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37640072

RESUMO

Biomass combustion releases a complex array of Volatile Organic Compounds (VOCs) that pose significant challenges to air quality and human health. Although biomass burning has been extensively studied at ecosystem levels, understanding the atmospheric transformation and impact on air quality of emissions in urban environments remains challenging due to complex sources and burning materials. In this study, we investigate the VOC emission rates and atmospheric chemical processing of predominantly wood burning emissions in a small urban centre in Greece. Ioannina is situated in a valley within the Dinaric Alps and experiences intense atmospheric pollution accumulation during winter due to its topography and high wood burning activity. During pollution event days, the ambient mixing ratios of key VOC species were found to be similar to those reported for major urban centres worldwide. Positive matrix factorisation (PMF) analysis revealed that biomass burning was the dominant emission source (>50 %), representing two thirds of OH reactivity, which indicates a highly reactive atmospheric mixture. Calculated OH reactivity ranges from 5 s-1 to an unprecedented 278 s-1, and averages at 93 ± 66 s-1 at 9 PM, indicating the presence of exceptionally reactive VOCs. The highly pronounced photochemical formation of organic acids coincided with the formation of ozone, highlighting the significance of secondary formation of pollutants in poorly ventilated urban areas. Our findings underscore the pressing need to transition from wood burning to environmentally friendly sources of energy in poorly ventilated urban areas, in order to improve air quality and safeguard public health.

5.
Sci Total Environ ; 864: 161003, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36539090

RESUMO

Twenty years of CO2, CH4 and CO greenhouse gas atmospheric concentration measurements at Finokalia station on Crete in the Eastern Mediterranean region are presented. This dataset is the longest in the Eastern Mediterranean, based on bi-weekly grab sampling since 2002 and continuous observations since June 2014. CO2 concentrations increase by 2.4 ppm·y-1 since 2002, in agreement with the general north hemisphere trend as derived by worldwide NOAA observations. CH4 showed a mean increasing trend of 7.5 ppb·y-1 since 2002, a rate that has accelerated since 2018 (12.4 ppb·y-1). In contrast, CO has decreased by 1.6 ppb·y-1 since 2002, which resulted from a strong decrease until 2017 (2.5 ppb·y-1), followed by a small increase in the last 3 years (0.2 ppb·y-1). Both CO2 and CH4 present maxima during winter and minima during summer, in general agreement with the observations at the ICOS stations in Europe. CO also presents the highest values in winter and the lowest values in summer during June, while a secondary maximum is seen in August, which can be attributed to open fires that often occur in the area during this period. The mean summertime diurnal cycles of CH4 and CO agree with a 24-h mean OH radical concentration of the order of 0.3-1 × 107 molecules·cm-3 over the region, in general agreement with the only existing in-situ observations at Finokalia for 2001.

6.
Nat Commun ; 13(1): 7744, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517478

RESUMO

Saharan dust intrusions strongly impact Atlantic and Mediterranean coastal regions. Today, most operational dust forecasts extend only 2-5 days. Here we show that on timescales of weeks to months, North African dust emission and transport are impacted by sudden stratospheric warmings (SSWs), which establish a negative North Atlantic Oscillation-like surface signal. Chemical transport models show a large-scale dipolar dust response to SSWs, with the burden in the Eastern Mediterranean enhanced up to 30% and a corresponding reduction in West Africa. Observations of inhalable particulate (PM10) concentrations and aerosol optical depth confirm this dipole. On average, a single SSW causes 680-2460 additional premature deaths in the Eastern Mediterranean and prevents 1180-2040 premature deaths in West Africa from exposure to dust-source fine particulate (PM2.5). Currently, SSWs are predictable 1-2 weeks in advance. Altogether, the stratosphere represents an important source of subseasonal predictability for air quality over West Africa and the Eastern Mediterranean.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poeira/análise , Material Particulado/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Aerossóis/análise , África do Norte , Monitoramento Ambiental
7.
Environ Sci Technol ; 56(22): 15290-15297, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36318938

RESUMO

97% of the urban population in the EU in 2019 were exposed to an annual fine particulate matter level higher than the World Health Organization (WHO) guidelines (5 µg/m3). Organic aerosol (OA) is one of the major air pollutants, and the knowledge of its sources is crucial for designing cost-effective mitigation strategies. Positive matrix factorization (PMF) on aerosol mass spectrometer (AMS) or aerosol chemical speciation monitor (ACSM) data is the most common method for source apportionment (SA) analysis on ambient OA. However, conventional PMF requires extensive human labor, preventing the implementation of SA for routine monitoring applications. This study proposes the source finder real-time (SoFi RT, Datalystica Ltd.) approach for efficient retrieval of OA sources. The results generated by SoFi RT agree remarkably well with the conventional rolling PMF results regarding factor profiles, time series, diurnal patterns, and yearly relative contributions of OA factor on three year-long ACSM data sets collected in Athens, Paris, and Zurich. Although the initialization of SoFi RT requires a priori knowledge of OA sources (i.e., the approximate number of factors and relevant factor profiles) for the sampling site, this technique minimizes user interactions. Eventually, it could provide up-to-date trustable information on timescales useful to policymakers and air quality modelers.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Cidades , Monitoramento Ambiental/métodos , Aerossóis/análise , Poluentes Atmosféricos/análise , Material Particulado/análise , Poluição do Ar/prevenção & controle , Poluição do Ar/análise
8.
High Blood Press Cardiovasc Prev ; 29(6): 619-624, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36306104

RESUMO

INTRODUCTION: Fine particulate matter with an aerodynamic diameter < 2.5 µm (PM2.5) in the ambient air has been associated with increased blood pressure (BP) levels and new-onset hypertension. However, the association of BP with a sudden upsurge of PM2.5 in extreme conditions has not yet been demonstrated. AIM: To evaluate the association between PM2.5 pollutants the week before, during, and the week after the 2021 wildfires in Athens (Greece) and home BP measurements. METHODS: Home BP measurements were performed, and the readings were transferred to the doctor's office through a telemonitoring system on the patient's Smartphone application. Data from a calibrated, sensor-based PM2.5 monitoring network assessed PM2.5 exposure. RESULTS: PM2.5 pollutants demonstrated a gradual surge while the particle concentration was not different in the selected air pollution measurement stations. A total of 20 consecutive patients with controlled hypertension, mean age 61 ± 9 years, were included in the analysis. For one unit in µg/m3 increase of PM2.5 particle concentration, an average of 2.1 mmHg increment in systolic BP was observed after adjustment for confounders (P = 0.023). CONCLUSIONS: Our findings raise the hypothesis that short-term exposure to raised PM2.5 concentrations in the air appears to be associated with increases in systolic home BP." Telemonitoring systems of home BP recordings may provide important information for the clinical management of hypertensive patients, at least in conditions of major environmental disturbances, such as wildfires.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hipertensão , Incêndios Florestais , Humanos , Pessoa de Meia-Idade , Idoso , Pressão Sanguínea , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Hipertensão/diagnóstico , Hipertensão/epidemiologia
9.
Toxics ; 10(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35736890

RESUMO

This work evaluates the aerosol oxidative potential (OP) and its changes from modified air pollution emissions during the COVID-19 lockdown period in 2020, with the intent of elucidating the contribution of aerosol sources and related components to aerosol OP. For this, daily particulate matter (PM) samples at an urban background site were collected and analyzed with a chemical (acellular) assay based on Dithiothreitol (DTT) during the COVID-19 restriction period in Athens (Greece). The obtained time-series of OP, PM2.5, organic matter (OM) and SO42- of the pre-, post- and lockdown periods were also compared to the data of the same time periods during the years 2017-2019. Even though all traffic-related emissions have been significantly reduced during the lockdown period (by 30%), there is no reduction in water-soluble OP, organics and sulfate concentrations of aerosol during 2020. The results reveal that the decrease in traffic was not sufficient to drive any measurable change on OP, suggesting that other sources-such as biomass burning and secondary aerosol from long-range transport, which remained unchanged during the COVID lockdown-are the main contributors to OP in Athens, Greece.

10.
Environ Int ; 166: 107325, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716508

RESUMO

Organic aerosol (OA) is a key component of total submicron particulate matter (PM1), and comprehensive knowledge of OA sources across Europe is crucial to mitigate PM1 levels. Europe has a well-established air quality research infrastructure from which yearlong datasets using 21 aerosol chemical speciation monitors (ACSMs) and 1 aerosol mass spectrometer (AMS) were gathered during 2013-2019. It includes 9 non-urban and 13 urban sites. This study developed a state-of-the-art source apportionment protocol to analyse long-term OA mass spectrum data by applying the most advanced source apportionment strategies (i.e., rolling PMF, ME-2, and bootstrap). This harmonised protocol was followed strictly for all 22 datasets, making the source apportionment results more comparable. In addition, it enables quantification of the most common OA components such as hydrocarbon-like OA (HOA), biomass burning OA (BBOA), cooking-like OA (COA), more oxidised-oxygenated OA (MO-OOA), and less oxidised-oxygenated OA (LO-OOA). Other components such as coal combustion OA (CCOA), solid fuel OA (SFOA: mainly mixture of coal and peat combustion), cigarette smoke OA (CSOA), sea salt (mostly inorganic but part of the OA mass spectrum), coffee OA, and ship industry OA could also be separated at a few specific sites. Oxygenated OA (OOA) components make up most of the submicron OA mass (average = 71.1%, range from 43.7 to 100%). Solid fuel combustion-related OA components (i.e., BBOA, CCOA, and SFOA) are still considerable with in total 16.0% yearly contribution to the OA, yet mainly during winter months (21.4%). Overall, this comprehensive protocol works effectively across all sites governed by different sources and generates robust and consistent source apportionment results. Our work presents a comprehensive overview of OA sources in Europe with a unique combination of high time resolution (30-240 min) and long-term data coverage (9-36 months), providing essential information to improve/validate air quality, health impact, and climate models.

11.
Sci Total Environ ; 800: 149389, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426353

RESUMO

Levels and sources of non-Methane Hydrocarbons (NMHCs) were investigated at the urban background Thissio station, close to the historical center of Athens (Greece) from March 2016 to February 2017 (12 months), by means of an automated GC-FID. Alkanes dominated over aromatics and alkenes, with hourly mean levels ranging from detection limit up to 60 µg m-3 for i-pentane and 90 µg m-3 for toluene. Higher levels were recorded in the cold period relative to the warmer one. In addition, NMHCs seasonal diurnal cycles were characterized by a bimodal pattern, following the trend of tracers of anthropogenic sources. The Positive Matrix Factorization (PMF) was used for the allocation of NMHC to their sources. Five factors were identified and quantified, with traffic-related sources being the main one contributing up to 60% to total NMHCs, while biomass burning contributes up to 19%. A supplementary PMF assimilation was applied on a seasonal basis further including α-pinene, C6-C16 alkanes and aromatics. This PMF resulted to a seven-factor solution that allowed the examination of two additional sources, in addition to five already identified, highlighting the main contribution of anthropogenic sources (70%) to α-pinene.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Atmosfera , Biomassa , Hidrocarbonetos/análise , Metano
12.
Chemosphere ; 274: 129979, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33979931

RESUMO

The Concentration Weighted Trajectory (CWT) model is a well-known tool which combines the residence time (trajectory points) of air masses over specific regions with ambient concentrations of air pollutants, aiming to identify potential long range transport impacts. An upgraded 3D-version of CWT model (3D-CWT), investigating not only the geographical origin of the exogenous emissions but also the altitudinal layers in which the transport occurs, was developed and coupled with PM2.5-bound concentrations of water soluble ions (nss- SO4-2 (non-sea salt sulfates), NO3-, Cl-, NH4+, Na+, Mg+2, Ca+2 and K+) for the years 2017-2018, derived by the Auchencorth Moss supersite in Southeast Scotland, United Kingdom (UK). The 3D-CWT model was implemented in two distinct altitudinal layers above ground level (0 m ≤ Layer 1 < 1000 m, 1000 m ≤ Layer 2 < 2000 m), because few trajectory points exceeded the 2000 m limit. Transport of Secondary Inorganic Aerosols (SIA) from South - Southeast England were detected in both vertical layers, affecting SO4-2, NO3-, and NH4+ levels, whilst SIA intrusions from Northwest Europe were detected in Layer 2. Sea salt particle transport from North Atlantic and the North Sea, comprising Cl-, Na+ and Mg+2, were detected in both layers whilst K+ contributions from Southeast England were also detected in both layers, suggesting also impacts from biomass burning. Moreover particle transport of a crustal origin, marked by Ca+2 enhancement, mainly occurred in layer 1 and included soil/dust resuspension from areas around the station and infrequent dust intrusions from the Sahara desert.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Inglaterra , Monitoramento Ambiental , Europa (Continente) , Íons/análise , Mar do Norte , Material Particulado/análise , Escócia , Estações do Ano , Reino Unido , Água
13.
BMC Pediatr ; 21(1): 13, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407248

RESUMO

BACKGROUND: Desert dust events in Mediterranean countries, originating mostly from the Sahara and Arabian deserts, have been linked to climate change and are associated with significant increase in mortality and hospital admissions from respiratory causes. The MEDEA clinical intervention study in children with asthma is funded by EU LIFE+ program to evaluate the efficacy of recommendations aiming to reduce exposure to desert dust and related health effects. METHODS: This paper describes the design, methods, and challenges of the MEDEA childhood asthma study, which is performed in two highly exposed regions of the Eastern Mediterranean: Cyprus and Greece-Crete. Eligible children are recruited using screening surveys performed at primary schools and are randomized to three parallel intervention groups: a) no intervention for desert dust events, b) interventions for outdoor exposure reduction, and c) interventions for both outdoor and indoor exposure reduction. At baseline visits, participants are enrolled on MEDena® Health-Hub, which communicates, alerts and provides exposure reduction recommendations in anticipation of desert dust events. MEDEA employs novel environmental epidemiology and telemedicine methods including wearable GPS, actigraphy, health parameters sensors as well as indoor and outdoor air pollution samplers to assess study participants' compliance to recommendations, air pollutant exposures in homes and schools, and disease related clinical outcomes. DISCUSSION: The MEDEA study evaluates, for the first time, interventions aiming to reduce desert dust exposure and implement novel telemedicine methods in assessing clinical outcomes and personal compliance to recommendations. In Cyprus and Crete, during the first study period (February-May 2019), a total of 91 children participated in the trial while for the second study period (February-May 2020), another 120 children completed data collection. Recruitment for the third study period (February-May 2021) is underway. In this paper, we also present the unique challenges faced during the implementation of novel methodologies to reduce air pollution exposure in children. Engagement of families of asthmatic children, schools and local communities, is critical. Successful study completion will provide the knowledge for informed decision-making both at national and international level for mitigating the health effects of desert dust events in South-Eastern Europe. TRIAL REGISTRATION: ClinicalTrials.gov: NCT03503812 , April 20, 2018.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluição do Ar , Asma , África do Norte , Poluição do Ar/efeitos adversos , Poluição do Ar/prevenção & controle , Asma/diagnóstico , Asma/prevenção & controle , Criança , Poeira/análise , Exposição Ambiental/efeitos adversos , Europa Oriental , Grécia , Humanos
14.
Sci Total Environ ; 725: 138227, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32302827

RESUMO

The composition of atmospheric aerosols is dynamic and influenced by their emission sources, organic and inorganic composition, transport pathways, chemical and physical processes, microorganisms' content and more. Characterization of such factors can improve the ability to evaluate air quality and health risks under different atmospheric scenarios. Here we investigate the microbial composition of the atmospheric particulate matter (<10 µm; PM10), sampled in Bolu, Turkey, and the linkage to the chemical composition changes, and different environmental factors. We show distinct differences between aerosol composition of different sources and air-mass transport patterns, sampled in July-August 2017 and in February 2018. The summer samples had a typical northern component air mass trajectories and higher local wind speed. They were characterized by high PM10 levels, marine and mineral dust tracers and high relative abundance of Ascomycota, suggesting long-range transport of the particles from remote sources. In contrast, samples collected in February were characterized by a dominant contribution of southern air masses, and low wind speed. They had low PM10 values, higher relative abundance of antibiotic resistance genes and anthropogenic ions related to local industries and farming, suggesting a dominance of local sources. With the microbiome analyses reported here for the first time for this region, we show good agreement between airborne microbial composition, aerosol mass load, chemistry, and meteorology. These results allow better air quality evaluation and prediction capabilities.


Assuntos
Poluentes Atmosféricos/análise , Meteorologia , Microbiota , Aerossóis/análise , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise , Estações do Ano , Turquia
15.
Environ Sci Pollut Res Int ; 27(16): 20427-20445, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32240509

RESUMO

As part of the ChArMEx project (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr), one year of continuous filter sampling was conducted from August 2012 to August 2013 at a rural (coastal) site in Algeria aiming to better document fine aerosol seasonal variability and chemical composition in the Southern part of the Mediterranean. Over 350 filters have been collected, weighted, and analyzed for the main ions and organic and elemental carbon. The obtained mass concentrations varied between 2.5 and 50.6 µg/m3 for PM2.5. The annual modulations of PM2.5 showed higher concentrations in the end summer 2012 and the early summer 2013 (28.50 µg/m3 in August 2012, 20.23 µg/m3 in September 2012, 20.19 µg/m3 in July 2013, and 17.88 µg/m3in August 2013). The particulate organic matter (POM) presented the greatest contribution (50%), followed by the secondary inorganic aerosols (SIA, 27%). The average organic carbon OC concentrations ranged from 1.66 to 6.05 µgC/m3. The average elemental carbon EC concentrations ranged from 0.92 to 3.49 µgC/m3 and contributed 7% of the PM2.5 mass to Bou-Ismail. The average value of the OC /EC ratio was close to 5.1 in Bou-Ismail, and was close to that found in Finokalia 4 (Greece 2004, 2006) but was lower than that of Montseny 11 (Spain 2002-2007) Western Mediterranean Basin (WMB). The concentrations of water-soluble organic carbon WSOC in the PM2.5 ranging from 0.66 to 3.70 µg/m3 recorded the minimum level in March 2013, and the maximum level in August 2012, with an average of 2.02 µg/m3.


Assuntos
Poluentes Atmosféricos/análise , Aerossóis/análise , Argélia , Carbono/análise , Monitoramento Ambiental , Grécia , Material Particulado/análise , Estações do Ano , Espanha
16.
Environ Sci Technol ; 53(12): 6747-6756, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31091086

RESUMO

Oxidative potential (OP), which is the ability of certain components in atmospheric particles to generate reactive oxidative species (ROS) and deplete antioxidants in vivo, is a prevailing toxicological mechanism underlying the adverse health effects associated with exposure to ambient aerosols. While previous studies have identified the high OP of fresh biomass burning organic aerosols (BBOA), it remains unclear how it evolves throughout atmospheric transport. Using the dithiothreitol (DTT) assay as a measure of OP, a combination of field observations and laboratory experiments is used to determine how atmospheric aging transforms the intrinsic OP (OPmassDTT) of BBOA. For ambient BBOA collected during the fire seasons in Greece, OPmassDTT was observed to increase by a factor of 2.1 ± 0.9 for samples of atmospheric ages up to 68 h. Laboratory experiments indicate that aqueous photochemical aging (aging by UVB and UVA photolysis; as well as OH oxidation), as well as aging by ozone and atmospheric dilution can transform the OPmassDTT of the water-soluble fraction of wood smoke within 2 days of atmospheric transport. The results from this work suggest that the air quality impacts of biomass burning emissions can extend beyond regions near fire sites and should be accounted for.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis , Biomassa , Grécia , Estresse Oxidativo
17.
Nat Microbiol ; 3(7): 791-803, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29849062

RESUMO

LC3-associated phagocytosis (LAP) is a non-canonical autophagy pathway regulated by Rubicon, with an emerging role in immune homeostasis and antifungal host defence. Aspergillus cell wall melanin protects conidia (spores) from killing by phagocytes and promotes pathogenicity through blocking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent activation of LAP. However, the signalling regulating LAP upstream of Rubicon and the mechanism of melanin-induced inhibition of this pathway remain incompletely understood. Herein, we identify a Ca2+ signalling pathway that depends on intracellular Ca2+ sources from endoplasmic reticulum, endoplasmic reticulum-phagosome communication, Ca2+ release from phagosome lumen and calmodulin (CaM) recruitment, as a master regulator of Rubicon, the phagocyte NADPH oxidase NOX2 and other molecular components of LAP. Furthermore, we provide genetic evidence for the physiological importance of Ca2+-CaM signalling in aspergillosis. Finally, we demonstrate that Ca2+ sequestration by Aspergillus melanin inside the phagosome abrogates activation of Ca2+-CaM signalling to inhibit LAP. These findings reveal the important role of Ca2+-CaM signalling in antifungal immunity and identify an immunological function of Ca2+ binding by melanin pigments with broad physiological implications beyond fungal disease pathogenesis.


Assuntos
Aspergillus fumigatus/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Melaninas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Aspergilose/genética , Aspergilose/metabolismo , Aspergillus fumigatus/genética , Autofagia , Proteínas Relacionadas à Autofagia , Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Humanos , Camundongos , Fagocitose
19.
Sci Data ; 4: 170003, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28291234

RESUMO

Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment.

20.
Environ Sci Technol ; 50(13): 6912-20, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27286140

RESUMO

Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. Atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.


Assuntos
Poeira , Ferro/química , Aerossóis , Solubilidade , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...