Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 57(16): 2093-2096, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33514992

RESUMO

Transition metal complexes offer cost-effective alternatives as hole-transport materials (HTMs) in perovskite solar cells. However, the devices suffer from low performance. We boost the power conversion efficiency of devices with transition metal complex HTMs from 2% to above 10% through energy level tuning. We further demonstrate the excellent photostability of the device based on the additive-free HTM.

2.
Small ; 16(12): e1901466, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31131987

RESUMO

Nanostructured tin (IV) oxide (SnO2 ) is emerging as an ideal inorganic electron transport layer in n-i-p perovskite devices, due to superior electronic and low-temperature processing properties. However, significant differences in current-voltage performance and hysteresis phenomena arise as a result of the chosen fabrication technique. This indicates enormous scope to optimize the electron transport layer (ETL), however, to date the understanding of the origin of these phenomena is lacking. Reported here is a first comparison of two common SnO2 ETLs with contrasting performance and hysteresis phenomena, with an experimental strategy to combine the beneficial properties in a bilayer ETL architecture. In doing so, this is demonstrated to eliminate room-temperature hysteresis while simultaneously attaining impressive power conversion efficiency (PCE) greater than 20%. This approach highlights a new way to design custom ETLs using functional thin-film coatings of nanomaterials with optimized characteristics for stable, efficient, perovskite solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...