Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; 13(1): e20000, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-33016628

RESUMO

Soybean breeding relies on the use of wild (Glycine soja Sieb. and Zucc.) and domesticated [Glycine max (L.) Merr.] germplasm for trait improvement. Soybeans are self-pollinating and accessions can be maintained as pure lines, however within-accession genetic variation has been observed in previous studies of some landraces and elite cultivars. The objective of this study was to characterize within-line variation in the accessions housed in the USDA Soybean Germplasm Collection. This collection includes over 20,000 accessions, each previously genotyped using the SoySNP50K Chip. Each SoySNP50K genotype was developed by pooling approximately three individuals per accession. Therefore, clusters of SNPs called as heterozygous within an accession can be inferred to represent putative regions of heterogeneity between the three individuals sampled. In this study, we found high-probability intervals of heterogeneity in 4% of the collection, representing 870 accessions. Heterogeneous loci were found on every chromosome and, collectively, covered 98.4% of the soybean genome and 99% of the gene models. Sanger sequencing confirmed regions of genomic heterogeneity among a subset of ten accessions. This dataset provides useful information and considerations for users of crop germplasm seed banks. Furthermore, the heterogeneous accessions and/or loci represent a unique genetic resource that is immediately available for forward and reverse genetics studies.


Assuntos
Fabaceae , Glycine max , Genoma de Planta , Genótipo , Humanos , Glycine max/genética , Estados Unidos , United States Department of Agriculture
2.
Methods Mol Biol ; 1917: 217-234, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30610639

RESUMO

CRISPR/Cas9 mediated genome editing technology has experienced rapid advances in recent years and has been applied to a wide variety of plant species, including soybean. Several platforms have been developed for designing and cloning of single CRISPR targets or multiple targets in a single destination vector. This chapter provides an updated working protocol for applying CRISPR/Cas9 technology to target a single gene or multiple genes simultaneously in soybean. We describe two platforms for cloning single CRISPR targets and multiplexing targets, respectively, and reagent delivery methodologies. The protocols address crucial limiting steps that can limit CRISPR editing in soybean hairy roots, composite plants, and tissue culture-based regenerated whole plants. To date, transgenic soybean plants with mutagenesis in up to three target genes have been obtained with this procedure.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Glycine max/genética , Plantas Geneticamente Modificadas/genética , Eletroforese em Gel de Poliacrilamida , Raízes de Plantas/genética , Transformação Genética/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...