Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(25): 32874-32885, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38863159

RESUMO

Polymer coating to substrates alters surface chemistry and imparts bulk material functionalities with a minute thickness, even in nanoscale. Specific surface modification of a substate usually requires an active substrate that, e.g., undergoes a chemical reaction with the modifying species. Here, we present a generic method for surface modification, namely, solid-state adsorption, occurring purely by entropic strive. Formed by heating above the melting point or glass transition and subsequent rinsing of the excess polymer, the emerging ultrathin (<10 nm) layers are known in fundamental polymer physics but have never been utilized as building blocks for materials and they have never been explored on soft matter substrates. We show with model surfaces as well as bulk substrates, how solid-state adsorption of common polymers, such as polystyrene and poly(lactic acid), can be applied on soft, cellulose-based substrates. Our study showcases the versatility of solid-state adsorption across various polymer/substrate systems. Specifically, we achieve proof-of-concept hydrophobization on flexible cellulosic substrates, maintaining irreversible and miniscule adsorption yet with nearly 100% coverage without compromising the bulk material properties. The method can be considered generic for all polymers whose Tg and Tm are below those of the to-be-coated adsorbed layer, and whose integrity can withstand the solvent leaching conditions. Its full potential has broad implications for diverse materials systems where surface coatings play an important role, such as packaging, foldable electronics, or membrane technology.

2.
Biomacromolecules ; 24(11): 4672-4679, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37729475

RESUMO

Nanocellulose is isolated from cellulosic fibers and exhibits many properties that macroscale cellulose lacks. Cellulose nanocrystals (CNCs) are a subcategory of nanocellulose made of stiff, rodlike, and highly crystalline nanoparticles. Algae of the order Cladophorales are the source of the longest cellulosic nanocrystals, but manufacturing these CNCs is not well-studied. So far, most publications have focused on the applications of this material, with the basic manufacturing parameters and material properties receiving little attention. In this article, we investigate the entirety of the current manufacturing process from raw algal biomass (Cladophora glomerata) to the isolation of algal cellulose nanocrystals. Yields and cellulose purities are investigated for algal cellulose and the relevant process intermediates. Furthermore, the effect of sulfuric acid hydrolysis, which is used to convert cellulose into CNCs and ultimately determines the material properties and some of the sustainability aspects, is examined and compared to literature results on wood cellulose nanocrystals. Long (>4 µm) CNCs form a small fraction of the overall number of CNCs but are still present in measurable amounts. The results define essential material properties for algal CNCs, simplifying their future use in functional cellulosic materials.


Assuntos
Celulose , Nanopartículas , Celulose/química , Nanopartículas/química , Hidrólise
3.
Chem Rev ; 123(5): 1925-2015, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36724185

RESUMO

Modern technology has enabled the isolation of nanocellulose from plant-based fibers, and the current trend focuses on utilizing nanocellulose in a broad range of sustainable materials applications. Water is generally seen as a detrimental component when in contact with nanocellulose-based materials, just like it is harmful for traditional cellulosic materials such as paper or cardboard. However, water is an integral component in plants, and many applications of nanocellulose already accept the presence of water or make use of it. This review gives a comprehensive account of nanocellulose-water interactions and their repercussions in all key areas of contemporary research: fundamental physical chemistry, chemical modification of nanocellulose, materials applications, and analytical methods to map the water interactions and the effect of water on a nanocellulose matrix.

4.
Carbohydr Polym ; 303: 120465, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657848

RESUMO

The industrial implementation of cellulose nanocrystals (CNCs) in films and coatings requires thorough evaluation of the internal stresses post-consolidation, as they cause fracturing and peeling. Characterizing the impact of plasticizing additives on stress is therefore critical. Herein, we use the deflection of thin glass substrates to measure drying stresses in consolidating CNC films, and benchmark the impact of five additives (glucose, glycerol, poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA) and bovine serum albumin). Glycerol and PEG reduced drying stresses effectively, while PEG of increased molecular weight (from 0.2 to 10 kDa), PVA, and BSA were less effective. We analyzed the temporal aspects of the process, where stress relaxation of up to 30 % was observed 2 years after coating formation. Finally, we provide a framework to evaluate the impact of CNC morphology on residual stresses. The introduced approach is expected to fast-track the optimization and implementation of coatings based on biocolloids.


Assuntos
Celulose , Nanopartículas , Celulose/química , Glicerol , Nanopartículas/química , Polietilenoglicóis/química , Álcool de Polivinil/química
5.
J Colloid Interface Sci ; 605: 441-450, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34333417

RESUMO

HYPOTHESIS: Solid-state polymer adsorption offers a distinct approach for surface modification. These ultrathin, so-called Guiselin layers can easily be obtained by placing a polymer melt in contact with an interface, followed by a removal of the non-adsorbed layer with a good solvent. While the mechanism of formation has been well established for Guiselin layers, their stability, crucial from the perspective of materials applications, is not. The stability is a trade-off in the entropic penalty between cooperative detachment of the number of segments directly adsorbed on the substrate and consecutively pinned monomers. EXPERIMENTS: Experimental model systems of Guiselin layers of polystyrene (PS) on silicon wafers with native oxide layer on top were employed. The stability of the adsorbed layers was studied as a function of PS molecular weight and polydispersibility by various microscopic and spectroscopic tools as well as quasi-static contact angle measurements. FINDINGS: Adsorbed layers from low molecular weight PS were disrupted with typical spinodal decomposition patterns whereas high molecular weight (>500 kDa) PS resulted in stable, continuous layers. Moreover, we show that Guiselin layers offer an enticing way to modify a surface, as demonstrated by adsorbed PS that imparts a hydrophobic character to initially hydrophilic silicon wafers.

6.
Macromol Rapid Commun ; 42(12): e2100092, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33955068

RESUMO

Nanoparticle assembly is intensely surveyed because of the numerous applications within fields such as catalysis, batteries, and biomedicine. Here, directed assembly of rod-like, biologically derived cellulose nanocrystals (CNCs) within the template of a processed cotton fiber cell wall, that is, the native origin of CNCs, is reported. It is a system where the assembly takes place in solid state simultaneously with the top-down formation of the CNCs via hydrolysis with HCl vapor. Upon hydrolysis, cellulose microfibrils in the fiber break down to CNCs that then pack together, resulting in reduced pore size distribution of the original fiber. The denser packing is demonstrated by N2 adsorption, water uptake, thermoporometry, and small-angle X-ray scattering, and hypothetically assigned to attractive van der Waals interactions between the CNCs.


Assuntos
Celulose , Nanopartículas , Parede Celular , Fibra de Algodão , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA