Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 63(2): 100166, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35016907

RESUMO

Apolipoprotein F (ApoF) modulates lipoprotein metabolism by selectively inhibiting cholesteryl ester transfer protein activity on LDL. This ApoF activity requires that it is bound to LDL. How hyperlipidemia alters total plasma ApoF and its binding to LDL are poorly understood. In this study, total plasma ApoF and LDL-bound ApoF were quantified by ELISA (n = 200). Plasma ApoF was increased 31% in hypercholesterolemic plasma but decreased 20% in hypertriglyceridemia. However, in donors with combined hypercholesterolemia and hypertriglyceridemia, the elevated triglyceride ameliorated the rise in ApoF caused by hypercholesterolemia alone. Compared with normolipidemic LDL, hypercholesterolemic LDL contained ∼2-fold more ApoF per LDL particle, whereas ApoF bound to LDL in hypertriglyceridemia plasma was <20% of control. To understand the basis for altered association of ApoF with hyperlipidemic LDL, the physiochemical properties of LDL were modified in vitro by cholesteryl ester transfer protein ± LCAT activities. The time-dependent change in LDL lipid composition, proteome, core and surface lipid packing, LDL surface charge, and LDL size caused by these factors were compared with the ApoF binding capacity of these LDLs. Only LDL particle size correlated with ApoF binding capacity. This positive association between LDL size and ApoF content was confirmed in hyperlipidemic plasmas. Similarly, when in vitro produced and enlarged LDLs with elevated ApoF binding capacity were incubated with LPL to reduce their size, ApoF binding was reduced by 90%. Thus, plasma ApoF levels and the activation status of this ApoF are differentially altered by hypercholesterolemia and hypertriglyceridemia. LDL size is a key determinate of ApoF binding and activation.


Assuntos
Apolipoproteínas
2.
Lipids ; 57(1): 69-79, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866179

RESUMO

We previously reported that overexpression of full-length cholesteryl ester transfer protein (FL-CETP), but not its exon 9-deleted variant (∆E9-CETP), in an adipose cell line reduces their triacylglycerol (TAG) content. This provided mechanistic insight into several in vivo studies where FL-CETP levels are inversely correlated with adiposity. However, increased FL-CETP is also associated with elevated hepatic lipids, suggesting that the effect of CETP on cellular lipid metabolism may be tissue-specific. Here, we directly investigated the role of FL-CETP and ∆E9-CETP in hepatic lipid metabolism. FL- or ∆E9-CETP was overexpressed in HepG2-C3A by adenovirus transduction. Overexpression of either FL or ∆E9-CETP in hepatocytes increased cellular TAG mass by 25% but reduced TAG secretion. This cellular TAG was contained in larger and more numerous lipid droplets. Analysis of TAG synthetic and catabolic pathways showed that this elevated TAG content was due to increased incorporation of fatty acid into TAG (24%), and higher de novo synthesis of fatty acid (50%) and TAG from acetate (40%). siRNA knockdown of CETP had the opposite effect on TAG synthesis and lipogenesis, and decreased cellular TAG. This novel increase in cellular TAG by FL-CETP overexpression was reproduced in Caco-2 intestinal epithelial cells. We conclude that, unlike that seen in adipocyte cells, overexpression of either CETP isoform in lipoprotein-secreting cells promotes the accumulation of TAG. These data suggest that the in vivo correlation between CETP levels and hepatic steatosis can be explained, in part, by a direct effect of CETP on hepatocyte cellular metabolism.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol , Hepatócitos , Células CACO-2 , Proteínas de Transferência de Ésteres de Colesterol/genética , Ésteres do Colesterol , Éxons , Células Hep G2 , Humanos , Triglicerídeos
3.
J Lipid Res ; 62: 100027, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33515552

RESUMO

Cholesteryl ester transfer protein (CETP) modulates lipoprotein metabolism by transferring cholesteryl ester (CE) and triglyceride (TG) between lipoproteins. However, differences in the way CETP functions exist across species. Unlike human CETP, hamster CETP prefers TG over CE as a substrate, raising questions regarding how substrate preference may impact lipoprotein metabolism. To understand how altering the CE versus TG substrate specificity of CETP might impact lipoprotein metabolism in humans, we modified CETP expression in fat/cholesterol-fed hamsters, which have a human-like lipoprotein profile. Hamsters received adenoviruses expressing no CETP, hamster CETP, or human CETP. Total plasma CETP mass increased up to 70% in the hamster and human CETP groups. Hamsters expressing human CETP exhibited decreased endogenous hamster CETP, resulting in an overall CE:TG preference of plasma CETP that was similar to that in humans. Hamster CETP overexpression had little impact on lipoproteins, whereas human CETP expression reduced HDL by 60% without affecting LDL. HDLs were TG enriched and CE depleted and much smaller, causing the HDL3:HDL2 ratio to increase threefold. HDL from hamsters expressing human CETP supported higher LCAT activity and greater cholesterol efflux. The fecal excretion of HDL-associated CE in human CETP animals was unchanged. However, much of this cholesterol accumulated in the liver and was associated with a 1.8-fold increase in hepatic cholesterol mass. Overall, these data show in a human-like lipoprotein model that modification of CETP's lipid substrate preference selectively alters HDL concentration and function. This provides a powerful tool for modulating HDL metabolism and impacting sterol balance in vivo.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...