Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36500425

RESUMO

Donor-acceptor conjugated polymers are considered advanced semiconductor materials for the development of thin-film electronics. One of the most attractive families of polymeric semiconductors in terms of photovoltaic applications are benzodithiophene-based polymers owing to their highly tunable electronic and physicochemical properties, and readily scalable production. In this work, we report the synthesis of three novel push-pull benzodithiophene-based polymers with different side chains and their investigation as hole transport materials (HTM) in perovskite solar cells (PSCs). It is shown that polymer P3 that contains triisopropylsilyl side groups exhibits better film-forming ability that, along with high hole mobilities, results in increased characteristics of PSCs. Encouraging a power conversion efficiency (PCE) of 17.4% was achieved for P3-based PSCs that outperformed the efficiency of devices based on P1, P2, and benchmark PTAA polymer. These findings feature the great potential of benzodithiophene-based conjugated polymers as dopant-free HTMs for the fabrication of efficient perovskite solar cells.


Assuntos
Compostos de Cálcio , Polímeros , Óxidos , Semicondutores
2.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36362163

RESUMO

Perovskite solar cells (PSCs) currently reach high efficiencies, while their insufficient stability remains an obstacle to their technological commercialization. The introduction of hole-transport materials (HTMs) into the device structure is a key approach for enhancing the efficiency and stability of devices. However, currently, the influence of the HTM structure or properties on the characteristics and operational stability of PSCs remains insufficiently studied. Herein, we present four novel push-pull small molecules, H1-4, with alternating thiophene and benzothiadiazole or fluorine-loaded benzothiadiazole units, which contain branched and linear alkyl chains in the different positions of terminal thiophenes to evaluate the impact of HTM structure on PSC performance. It is demonstrated that minor changes in the structure of HTMs significantly influence their behavior in thin films. In particular, H3 organizes into highly ordered lamellar structures in thin films, which proves to be crucial in boosting the efficiency and stability of PSCs. The presented results shed light on the crucial role of the HTM structure and the morphology of films in the performance of PSCs.


Assuntos
Energia Solar , Tiofenos/química , Halogenação
3.
J Phys Chem Lett ; 11(14): 5563-5568, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32564599

RESUMO

Recent studies have shown that charge transport interlayers with low gas permeability can increase the operational lifetime of perovskite solar cells serving as a barrier for migration of volatile decomposition products from the photoactive layer. Herein we present a hybrid hole transport layer (HTL) comprised of p-type polytriarylamine (PTAA) polymer and vanadium(V) oxide (VOx). Devices with PTAA/VOx top HTL reach up to 20% efficiency and demonstrate negligible degradation after 4500 h of light soaking, whereas reference cells using PTAA/MoOx as HTL lose ∼50% of their initial efficiency under the same aging conditions. It was shown that the main origin of the enhanced device stability lies in the higher tolerance of VOx toward MAPbI3 compared to the MoOx interlayer, which tends to facilitate perovskite decomposition. Our results demonstrate that the application of PTAA/VOx hybrid HTL enables long-term operational stability of perovskite solar cells, thus bringing them closer to commercial applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA