Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 306(9): 2388-2399, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-35475324

RESUMO

Information on the localization of the Type 1 melanocortin receptors (MC1Rs) in different regions of the brain is very scarce. As a result, the role of MC1Rs in the functioning of brain neurons and in the central regulation of physiological functions has not been studied. This work aimed to study the expression and distribution of MС1Rs in different brain areas of female C57Bl/6J mice. Using real-time polymerase chain reaction, we demonstrated the Mс1R gene expression in the cerebral cortex, midbrain, hypothalamus, medulla oblongata, and hippocampus. Using an immunohistochemical approach, we showed the MС1R localization in neurons of the hypothalamic arcuate, paraventricular and supraoptic nuclei, nucleus tractus solitarius (NTS), dorsal hippocampus, substantia nigra, and cerebral cortex. Using double immunolabeling, the MC1Rs were visualized on the surface and in the bodies and outgrowths of pro-opiomelanocortin (POMC)-immunopositive neurons in the hypothalamic arcuate nucleus, NTS, hippocampal CA3 and CA1 regions, and cerebral cortex. Co-localization with POMC indicates that MC1R, like MC3R, is able to function as an autoreceptor. In the paraventricular and supraoptic nuclei, MC1Rs were visualized on the surface and in the cell bodies of vasopressin- and oxytocin-immunopositive neurons, indicating a relationship between hypothalamic MC1R signaling and vasopressin and oxytocin production. The data obtained indicate a wide distribution of MC1Rs in different areas of the mouse brain and their localization in POMC-, vasopressin- and oxytocin-immunopositive neurons, which may indicate the participation of MC1Rs in the control of many physiological processes in the central nervous system.


Assuntos
Ocitocina , Pró-Opiomelanocortina , Camundongos , Animais , Feminino , Pró-Opiomelanocortina/metabolismo , Ocitocina/análise , Ocitocina/metabolismo , Imuno-Histoquímica , Hipotálamo/metabolismo , Vasopressinas/análise , Vasopressinas/genética , Vasopressinas/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo , Receptores de Melanocortina/metabolismo
2.
Neurochem Res ; 43(4): 821-837, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29397535

RESUMO

The pro-opiomelanocortin (POMC)-expressing neurons of the hypothalamic arcuate nucleus (ARC) are involved in the control of food intake and metabolic processes. It is assumed that, in addition to leptin, the activity of these neurons is regulated by serotonin and dopamine, but only subtype 2C serotonin receptors (5-HT2CR) was identified earlier on the POMC-neurons. The aim of this work was a comparative study of the localization and number of leptin receptors (LepR), types 1 and 2 dopamine receptors (D1R, D2R), 5-HT1BR and 5-HT2CR on the POMC-neurons and the expression of the genes encoding them in the ARC of the normal and diet-induced obese (DIO) rodents and the agouti mice (A y /a) with the melanocortin obesity. As shown by immunohistochemistry (IHC), all the studied receptors were located on the POMC-immunopositive neurons, and their IHC-content was in agreement with the expression of their genes. In DIO rats the number of D1R and D2R in the POMC-neurons and their expression in the ARC were reduced. In DIO mice the number of D1R and D2R did not change, while the number of LepR and 5-HT2CR was increased, although to a small extent. In the POMC-neurons of agouti mice the number of LepR, D2R, 5-HT1BR and 5-HT2CR was increased, and the D1R number was reduced. Thus, our data demonstrates for the first time the localization of different types of the serotonin and dopamine receptors on the POMC-neurons and a specific pattern of the changes of their number and expression in the DIO and melanocortin obesity.


Assuntos
Hipotálamo/metabolismo , Obesidade/metabolismo , Pró-Opiomelanocortina/biossíntese , Receptores Dopaminérgicos/biossíntese , Receptores para Leptina/biossíntese , Receptores de Serotonina/biossíntese , Animais , Feminino , Hipotálamo/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/química , Neurônios/metabolismo , Pró-Opiomelanocortina/análise , Ratos , Ratos Wistar , Receptores Dopaminérgicos/análise , Receptores para Leptina/análise , Receptores de Serotonina/análise , Roedores
3.
Int J Nanomedicine ; 11: 4521-4533, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27660444

RESUMO

In the present study, a poly-l-lactide/silk fibroin (PL-SF) bilayer scaffold seeded with allogenic bone marrow stromal cells (BMSCs) was investigated as a potential approach for bladder tissue engineering in a model of partial bladder wall cystectomy in rabbits. The inner porous layer of the scaffold produced from silk fibroin was designed to promote cell proliferation and the outer layer produced from poly-l-lactic acid to serve as a waterproof barrier. To compare the feasibility and efficacy of BMSC application in the reconstruction of bladder defects, 12 adult male rabbits were divided into experimental and control groups (six animals each) that received a scaffold seeded with BMSCs or an acellular one, respectively. For BMSC tracking in the graft in in vivo studies using magnetic resonance imaging, cells were labeled with superparamagnetic iron oxide nanoparticles. In vitro studies demonstrated high intracellular incorporation of nanoparticles and the absence of a toxic influence on BMSC viability and proliferation. Following implantation of the graft with BMSCs into the bladder, we observed integration of the scaffold with surrounding bladder tissues (as detected by magnetic resonance imaging). During the follow-up period of 12 weeks, labeled BMSCs resided in the implanted scaffold. The functional activity of the reconstructed bladder was confirmed by electromyography. Subsequent histological assay demonstrated enhanced biointegrative properties of the PL-SF scaffold with cells in comparison to the control graft, as related to complete regeneration of the smooth muscle and urothelium tissues in the implant. Confocal microscopy studies confirmed the presence of the superparamagnetic iron oxide nanoparticle-labeled BMSCs in newly formed bladder layers, thus indicating the role of stem cells in bladder regeneration. The results of this study demonstrate that application of a PL-SF scaffold seeded with allogenic BMSCs can enhance biointegration of the graft in vivo and support bladder tissue regeneration and function.

4.
Nanoscale ; 7(48): 20652-64, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26599206

RESUMO

The stress-inducible 72 kDa heat shock protein Hsp70 is known to be expressed on the membrane of highly aggressive tumor cells including high-grade gliomas, but not on the corresponding normal cells. Membrane Hsp70 (mHsp70) is rapidly internalized into tumor cells and thus targeting of mHsp70 might provide a promising strategy for theranostics. Superparamagnetic iron oxide nanoparticles (SPIONs) are contrast negative agents that are used for the detection of tumors with MRI. Herein, we conjugated the Hsp70-specific antibody (cmHsp70.1) which is known to recognize mHsp70 to superparamagnetic iron nanoparticles to assess tumor-specific targeting before and after ionizing irradiation. In vitro experiments demonstrated the selectivity of SPION-cmHsp70.1 conjugates to free and mHsp70 in different tumor cell types (C6 glioblastoma, K562 leukemia, HeLa cervix carcinoma) in a dose-dependent manner. High-resolution MRI (11 T) on T(2)-weighted images showed the retention of the conjugates in the C6 glioma model. Accumulation of SPION-cmHsp70.1 nanoparticles in the glioma resulted in a nearly 2-fold drop of T*(2) values in comparison to non-conjugated SPIONs. Biodistribution analysis using NLR-M(2) measurements showed a 7-fold increase in the tumor-to-background (normal brain) uptake ratio of SPION-cmHsp70.1 conjugates in glioma-bearing rats in comparison to SPIONs. This accumulation within Hsp70-positive glioma was further enhanced after a single dose (10 Gy) of ionizing radiation. Elevated accumulation of the magnetic conjugates in the tumor due to radiosensitization proves the combination of radiotherapy and application of Hsp70-targeted agents in brain tumors.


Assuntos
Anticorpos Monoclonais Murinos , Neoplasias Encefálicas/terapia , Quimiorradioterapia/métodos , Sistemas de Liberação de Medicamentos/métodos , Raios gama/uso terapêutico , Glioma/terapia , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Nanopartículas de Magnetita/química , Animais , Anticorpos Monoclonais Murinos/química , Anticorpos Monoclonais Murinos/farmacologia , Proteínas de Choque Térmico HSP70/química , Células HeLa , Humanos , Células K562 , Masculino , Ratos , Ratos Wistar
5.
Drug Des Devel Ther ; 8: 639-50, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24920887

RESUMO

Recombinant 70 kDa heat shock protein (Hsp70) is an antiapoptotic protein that has a cell protective activity in stress stimuli and thus could be a useful therapeutic agent in the management of patients with acute ischemic stroke. The neuroprotective and neurotherapeutic activity of recombinant Hsp70 was explored in a model of experimental stroke in rats. Ischemia was produced by the occlusion of the middle cerebral artery for 45 minutes. To assess its neuroprotective capacity, Hsp70, at various concentrations, was intravenously injected 20 minutes prior to ischemia. Forty-eight hours after ischemia, rats were sacrificed and brain tissue sections were stained with 2% triphenyl tetrazolium chloride. Preliminary treatment with Hsp70 significantly reduced the ischemic zone (optimal response at 2.5 mg/kg). To assess Hsp70's neurotherapeutic activity, we intravenously administered Hsp70 via the tail vein 2 hours after reperfusion (2 hours and 45 minutes after ischemia). Rats were then kept alive for 72 hours. The ischemic region was analyzed using a high-field 11 T MRI scanner. Administration of the Hsp70 decreased the infarction zone in a dose-dependent manner with an optimal (threefold) therapeutic response at 5 mg/kg. Long-term treatment of the ischemic rats with Hsp70 formulated in alginate granules with retarded release of protein further reduced the infarct volume in the brain as well as apoptotic area (annexin V staining). Due to its high neurotherapeutic potential, prolonged delivery of Hsp70 could be useful in the management of acute ischemic stroke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Proteínas de Choque Térmico HSP70/uso terapêutico , Administração Intravenosa , Animais , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP70/administração & dosagem , Masculino , Ratos , Ratos Wistar , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/uso terapêutico
6.
Int J Nanomedicine ; 9: 273-87, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24421639

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) conjugated with recombinant human epidermal growth factor (SPION-EGF) were studied as a potential agent for magnetic resonance imaging contrast enhancement of malignant brain tumors. Synthesized conjugates were characterized by transmission electron microscopy, dynamic light scattering, and nuclear magnetic resonance relaxometry. The interaction of SPION-EGF conjugates with cells was analyzed in a C6 glioma cell culture. The distribution of the nanoparticles and their accumulation in tumors were assessed by magnetic resonance imaging in an orthotopic model of C6 gliomas. SPION-EGF nanosuspensions had the properties of a negative contrast agent with high coefficients of relaxation efficiency. In vitro studies of SPION-EGF nanoparticles showed high intracellular incorporation and the absence of a toxic influence on C6 cell viability and proliferation. Intravenous administration of SPION-EGF conjugates in animals provided receptor-mediated targeted delivery across the blood-brain barrier and tumor retention of the nanoparticles; this was more efficient than with unconjugated SPIONs. The accumulation of conjugates in the glioma was revealed as hypotensive zones on T2-weighted images with a twofold reduction in T2 relaxation time in comparison to unconjugated SPIONs (P<0.001). SPION-EGF conjugates provide targeted delivery and efficient magnetic resonance contrast enhancement of EGFR-overexpressing C6 gliomas.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Dextranos/administração & dosagem , Dextranos/química , Fator de Crescimento Epidérmico/farmacocinética , Glioma/tratamento farmacológico , Glioma/metabolismo , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/química , Animais , Apoptose , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Dextranos/ultraestrutura , Fator de Crescimento Epidérmico/química , Fator de Crescimento Epidérmico/genética , Glioma/patologia , Nanopartículas de Magnetita/ultraestrutura , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...