Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 11(29): 6823-6836, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358016

RESUMO

The outspread of bacterial pathogens causing severe infections and spreading rapidly, especially among hospitalized patients, is worrying and represents a global public health issue. Current disinfection techniques are becoming insufficient to counteract the spread of these pathogens because they carry multiple antibiotic-resistance genes. For this reason, a constant need exists for new technological solutions that rely on physical methods rather than chemicals. Nanotechnology support provides novel and unexplored opportunities to boost groundbreaking, next-gen solutions. With the help of plasmonic-assisted nanomaterials, we present and discuss our findings in innovative bacterial disinfection techniques. Gold nanorods (AuNRs) immobilized on rigid substrates are utilized as efficient white light-to-heat transducers (thermoplasmonic effect) for photo-thermal (PT) disinfection. The resulting AuNRs array shows a high sensitivity change in refractive index and an extraordinary capability in converting white light to heat, producing a temperature change greater than 50 °C in a few minute interval illumination time. Results were validated using a theoretical approach based on a diffusive heat transfer model. Experiments performed with a strain of Escherichia coli as a model microorganism confirm the excellent capability of the AuNRs array to reduce the bacteria viability upon white light illumination. Conversely, the E. coli cells remain viable without white light illumination, which also confirms the lack of intrinsic toxicity of the AuNRs array. The PT transduction capability of the AuNRs array is utilized to produce white light heating of medical tools used during surgical treatments, generating a temperature increase that can be controlled and is suitable for disinfection. Our findings are pioneering a new opportunity for healthcare facilities since the reported methodology allows non-hazardous disinfection of medical devices by simply employing a conventional white light lamp.


Assuntos
Escherichia coli , Nanotubos , Humanos , Desinfecção/métodos , Nanotubos/química , Luz , Ouro/química
2.
Materials (Basel) ; 15(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36013901

RESUMO

Thermal control systems have been introduced as an important part of electronic devices, enabling thermal management of their electronic components. Loop heat pipe (LHP) is a passive two-phase heat transfer device with significant potential for numerous applications, such as aerospace applications, high-power LEDs, and solar central receivers. Its advantages are high heat transfer capability, low thermal resistance, long-distance heat transfer, and compact structure. The essential role of wick structures on the performance of LHPs has already been highlighted, but no comprehensive review is available that deals with different parameters such as LHP design and wick size, which are largely decisive and effective in achieving a practical level of thermal transmission governed by wick structures. To rely on this necessity, this article summarizes, analyzes, and classifies advancements in the design and fabrication of wick structures. The main conclusion to be drawn after careful monitoring and weighing of the related literature is that LHPs with composites and additively manufactured wicks show a higher heat transfer coefficient than other conventional structures. Indeed, future works should be focused on the design of more structurally efficient wicks, which may allow us to optimize materials and geometrical parameters of wick structure for higher heat transfer through LHPs.

3.
Materials (Basel) ; 15(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35208149

RESUMO

The aim of this review is to present the recent developments in heat pipe production, which respond to the current technical problems related to the wide implementation of this technology. A novel approach in HP manufacturing is to utilise hi-tech additive manufacturing techniques where the most complicated geometries are fabricated layer-by-layer directly from a digital file. This technology might be a solution to various challenges that exist in HP production, i.e., (1) manufacturing of complex or unusual geometries HPs; (2) manufacturing complicated and efficient homogenous wick structures with desired porosity, uniform pore sizes, permeability, thickness and where the pores are evenly distributed; (3) manufacturing a gravity friendly wick structures; (4) high customisation and production time; (5) high costs; (6) difficulties in the integration of the HP into a unit chassis that enables direct thermal management of heated element and decrease its total thermal resistance; (7) high weight and material use of the part; (8) difficulties in sealing; (9) deformation of the flat shape HPs caused by the high pressure and uneven distribution of stress in the casing, among others.

4.
Materials (Basel) ; 14(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34832434

RESUMO

This paper presents the results of experiments carried out on a specially designed experimental rig designed for the study of capillary pressure generated in the Loop Heat Pipe (LHP) evaporator. The commercially available porous structure made of sintered stainless steel constitutes the wick. Three different geometries of the porous wicks were tested, featuring the pore radius of 1, 3 and 7 µm. Ethanol and water as two different working fluids were tested at three different evaporator temperatures and three different installation charges. The paper firstly presents distributions of generated pressure in the LHP, indicating that the capillary pressure difference is generated in the porous structure. When installing with a wick that has a pore size of 1 µm and water as a working fluid, the pressure difference can reach up to 2.5 kPa at the installation charge of 65 mL. When installing with a wick that has a pore size of 1 µm and ethanol as a working fluid, the pressure difference can reach up to 2.1 kPa at the installation charge of 65 mL. The integral characteristics of the LHP were developed, namely, the mass flow rate vs. applied heat flux for both fluids. The results show that water offers larger pressure differences for developing the capillary pressure effect in the installation in comparison to ethanol. Additionally, this research presents the feasibility of manufacturing inexpensive LHPs with filter medium as a wick material and its influence on the LHP's thermal performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...