Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658192

RESUMO

Gut bacterial communities play a vital role in a host's digestion, fermentation of complex carbohydrates, absorption of nutrients and energy harvest/storage. Dugongs are obligate seagrass grazers with an expanded hindgut and associated microbiome. Here, we characterised and compared the faecal bacterial communities of dugongs from genetically distinct populations along the east coast of Australia, between subtropical Moreton Bay and tropical Cleveland Bay. Amplicon sequencing of fresh dugong faecal samples (n=47) revealed Firmicutes (62%) dominating the faecal bacterial communities across all populations. Several bacterial genera (Bacteroides, Clostridium sensu stricto 1, Blautia and Polaribacter) were detected in samples from all locations, suggesting their importance in seagrass digestion. Principal coordinate analysis showed the three southern-most dugong populations having different faecal bacterial community compositions from northern populations. The relative abundances of the genera Clostridium sensu stricto 13 and dgA-11 gut group were higher, but Bacteroides was lower, in the southern dugong populations, compared to the northern populations, suggesting potential adaptive changes associated with location. This study contributes to our knowledge of the faecal bacterial communities of dugongs inhabiting Australian coastal waters. Future studies of diet selection in relation to seagrass availability throughout the dugong's range will help to advance our understanding of the roles that seagrass species may play in affecting the dugong's faecal bacterial community composition.

2.
Food Funct ; 15(5): 2406-2421, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38265095

RESUMO

Nuts are highly nutritious and good sources of dietary fibre, when consumed as part of a healthy human diet. Upon consumption, nut particles of various sizes containing lipids entrapped by the plant cell walls enter the large intestine where they are fermented by the resident microbiota. This study investigated the microbial community shifts during in vitro fermentation of almond and macadamia substrates, of two particle sizes including fine particles (F = 250-500 µm) and cell clusters (CC = 710-1000 µm). The aim was to determine how particle size and biomass attachment altered the microbiota. Over the 48 h fermentation duration, short chain fatty acid concentrations increased due to particle size rather than nut type (almond or macadamia). However, nut type did change microbial population dynamics by stimulating specific genera. Tyzzerella, p253418B5 gut group, Lachnospiraceae UCG001, Geotrichum, Enterococcus, Amnipila and Acetitomaculum genera were unique for almonds. For macadamia, three unique genera including Prevotellaceae UCG004, Candidatus Methanomethylophilus and Alistipes were noted. Distinct shifts in the attached microbial biomass were noted due to nut particle size. Bacterial attachment to nut particles was visualised in situ during fermentation, revealing a decrease in lipids and an increase in attached bacteria over time. This interaction may be a pre-requisite for lipid breakdown during nut particle disappearance. Overall, this study provides insights into how nut fermentation alters the gut microbiota and the possible role that gut microbes have in lipid degradation.


Assuntos
Microbioma Gastrointestinal , Prunus dulcis , Humanos , Suínos , Animais , Macadamia , Tamanho da Partícula , Fermentação , Biomassa , Nozes , Lipídeos
3.
J Sci Food Agric ; 104(3): 1487-1496, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37824746

RESUMO

BACKGROUND: The demand for protein obtained from animal sources is growing rapidly, as is the necessity for sustainable animal feeds. The use of black soldier fly larvae (BSFL) reared on organic side streams as sustainable animal feed has been receiving attention lately. This study assessed the ability of near-infrared spectroscopy (NIRS) combined with chemometrics to evaluate the nutritional profile of BSFL instars (fifth and sixth) and frass obtained from two different diets, namely soy waste and customised bread-vegetable diet. Partial least squares (PLS) regression with leave one out cross-validation was used to develop models between the NIR spectral data and the reference analytical methods. RESULTS: Calibration models with good [coefficient of determination in calibration (Rcal 2 ): 0.90; ratio of performance to deviation (RPD) value: 3.6] and moderate (Rcal 2 : 0.76; RPD value: 2.1) prediction accuracy was observed for acid detergent fibre (ADF) and total carbon (TC), respectively. However, calibration models with moderate accuracy were observed for the prediction of crude protein (CP) (Rcal 2 : 0.63; RPD value: 1.4), crude fat (CF) (Rcal 2 : 0.70; RPD value: 1.6), neutral detergent fibre (NDF) (Rcal 2 : 0.60; RPD value: 1.6), starch (Rcal 2 : 0.52; RPD value: 1.4), and sugars (Rcal 2 : 0.52; RPD value: 1.4) owing to the narrow or uneven distribution of data over the range evaluated. CONCLUSION: The near-infrared (NIR) calibration models showed a good to moderate prediction accuracy for the prediction of ADF and TC content for two different BSFL instars and frass reared on two different diets. However, calibration models developed for predicting CP, CF, starch, sugars and NDF resulted in models with limited prediction accuracy. © 2023 Society of Chemical Industry.


Assuntos
Dípteros , Espectroscopia de Luz Próxima ao Infravermelho , Animais , Larva , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Detergentes , Ração Animal/análise , Amido , Açúcares
4.
Sensors (Basel) ; 23(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37571729

RESUMO

The use of black soldier fly larvae (BSFL) grown on different organic waste streams as a source of feed ingredient is becoming very popular in several regions across the globe. However, information about the easy-to-use methods to monitor the safety of BSFL is a major step limiting the commercialization of this source of protein. This study investigated the ability of near infrared (NIR) spectroscopy combined with chemometrics to predict yeast and mould counts (YMC) in the feed, larvae, and the residual frass. Partial least squares (PLS) regression was employed to predict the YMC in the feed, frass, and BSFL samples analyzed using NIR spectroscopy. The coefficient of determination in cross validation (R2CV) and the standard error in cross validation (SECV) obtained for the prediction of YMC for feed were (R2cv: 0.98 and SECV: 0.20), frass (R2cv: 0.81 and SECV: 0.90), larvae (R2cv: 0.91 and SECV: 0.27), and the combined set (R2cv: 0.74 and SECV: 0.82). However, the standard error of prediction (SEP) was considered moderate (range from 0.45 to 1.03). This study suggested that NIR spectroscopy could be utilized in commercial BSFL production facilities to monitor YMC in the feed and assist in the selection of suitable processing methods and control systems for either feed or larvae quality control.


Assuntos
Dípteros , Espectroscopia de Luz Próxima ao Infravermelho , Animais , Larva , Saccharomyces cerevisiae , Fungos
5.
Sci Rep ; 13(1): 4844, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964169

RESUMO

Dermatological conditions may be complicated by Staphylococcus spp. infections influencing skin and nasal microbiota. We investigated the associations between the resident nasal microbiota of shelter dogs with and without dermatological conditions carrying methicillin-resistant and -sensitive Staphylococcus spp. Nasal sampling of 16 dogs with and 52 without dermatological conditions were performed upon shelter admission (baseline), and then bi-weekly until discharge (follow-up). All samples were cultured for Staphylococcus spp., while 52 samples underwent microbiota analysis. Two elastic net logistic regression (ENR) models (Model 1-baseline samples; Model 2-follow-up samples) were developed to identify predictive associations between dermatological conditions and the variables: signalment, antimicrobial treatment, and nasal microbial genera. Follow-up nasal samples of dogs with dermatological conditions had decreased microbiota diversity and abundance compared to dogs without dermatological conditions. Our ENR models identified predictive differences in signalment and nasal microbial genera between baseline and follow-up samples. Co-occurrence networks showed nasal microbial genera were more dissimilar when comparing dogs with and without dermatological conditions at follow-up. Overall, this study is the first to investigate Staphylococcus spp. carriage effects on nasal microbial genera in a canine animal shelter population, and ultimately reveals the importance of investigating decolonisation and probiotic therapies for restoring nasal microbiota.


Assuntos
Doenças do Cão , Staphylococcus aureus Resistente à Meticilina , Microbiota , Infecções Estafilocócicas , Cães , Animais , Staphylococcus , Meticilina , Resistência a Meticilina , Infecções Estafilocócicas/epidemiologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Doenças do Cão/epidemiologia
6.
Food Funct ; 14(3): 1401-1414, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36637177

RESUMO

Upon wetting, chia (Salvia hispanica L.) nutlets produce a gel-like capsule of polysaccharides called mucilage that comprises a significant part of their dietary fibre content. Seed/nutlet mucilage is often used as a texture modifying hydrocolloid and bulking dietary fibre due to its water-binding ability, though the utility of mucilage from different sources is highly structure-function dependent. The composition and structure of chia nutlet mucilage is poorly defined, and a better understanding will aid in exploiting its dietary fibre functionality, particularly if, and how, it is utilised by gut microbiota. In this study, microscopy, chromatography, mass spectrometry and glycome profiling techniques showed that chia nutlet mucilage is highly complex, layered, and contains several polymer types. The mucilage comprises a novel xyloamylose containing both ß-linked-xylose and α-linked-glucose, a near-linear xylan that may be sparsely substituted, a modified cellulose domain, and abundant alcohol-soluble oligosaccharides. To assess the dietary fibre functionality of chia nutlet mucilage, an in vitro cumulative gas production technique was used to determine the fermentability of different chia nutlet preparations. The complex nature of chia nutlet mucilage led to poor fermentation where the oligosaccharides appeared to be the only fermentable substrate present in the mucilage. Of note, ground chia nutlets were better fermented than intact whole nutlets, as judged by short chain fatty acid production. Therefore, it is suggested that the benefits of eating chia as a "superfood", could be notably enhanced if the nutlets are ground rather than being consumed whole, improving the bioaccessibility of key nutrients including dietary fibre.


Assuntos
Mucilagem Vegetal , Salvia , Salvia hispanica , Fermentação , Salvia/química , Polissacarídeos/química , Sementes/química , Oligossacarídeos/análise , Fibras na Dieta/análise , Mucilagem Vegetal/química
7.
Food Funct ; 13(9): 5075-5088, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35411900

RESUMO

Insoluble undigested food residues are the predominant dietary form of 'fibre' from food plants, with the potential for fermentation by microbial species resident within the large intestine. Here we present results on in vitro fermentation of undigested fractions of legumes (chickpea flour, lentil flour, mung bean flour), and nuts (peanut, almond, macadamia) using a pooled faecal inoculum from pigs fed a nut- and legume-free diet. All substrates were pre-digested in vitro. Nuts were also separated into two particle sizes (PS), cell cluster (CC = 710-1000 µm) and fine (F = 250-500 µm), to test the effect of PS. All substrates tested were fermented for 48 hours, and measured according to gas production, with lentil (within legume flours) being the highest gas producer, and peanut being the highest gas producer within nuts. Undigested fractions from Nuts_F had significantly higher gas production than those from Nuts_CC, consistent with differences in surface area between the two PS. Relative short chain fatty acid concentrations between samples as metabolite end-products were consistent with relative gas production. Analysis of unfermented residues after different fermentation times, showed that cellular integrity was a major factor controlling fermentation rates and that entrapped protein/starch (legumes) and lipid (nuts) all contributed to the fermentation outcomes.


Assuntos
Fabaceae , Lens (Planta) , Animais , Fabaceae/química , Fermentação , Farinha/análise , Lens (Planta)/metabolismo , Nutrientes/análise , Nozes , Suínos , Verduras
8.
Carbohydr Polym ; 258: 117698, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33593569

RESUMO

To investigate the effects of interactions between cellulose and xyloglucan (XG) on in vitro fermentation, a composite of bacterial cellulose (BC) incorporating XG during pellicle formation (BCXG), was fermented using a human faecal inoculum, and compared with BC, XG and a mixture (BC&XG) physically blended to have the same BC to XG ratio of BCXG. Compared to individual polysaccharides, the fermentation extent of BC and fermentation rate of XG were promoted in BC&XG. XG embedded in the BCXG composite was degraded less than in BC&XG, while more cellulose in BCXG was fermented than in BC&XG. This combination explains the similar amount of short chain fatty acid production noted throughout the fermentation process for BCXG and BC&XG. Microbial community dynamics for each substrate were consistent with the corresponding polysaccharide degradation. Thus, interactions between cellulose and XG are shown to influence their fermentability in multiple ways.


Assuntos
Bactérias/metabolismo , Celulose/química , Ácidos Graxos/química , Fermentação , Glucanos/química , Xilanos/química , Adsorção , Compostos de Amônio/química , Biologia Computacional , Fezes/microbiologia , Gases , Humanos , Técnicas In Vitro , Cinética , Espectroscopia de Ressonância Magnética , Microbiota , Monossacarídeos/química , Polissacarídeos/química , RNA Ribossômico 16S/química
9.
Food Funct ; 12(3): 1135-1146, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33432311

RESUMO

Plant cell walls as well as their component polysaccharides in foods can be utilized to alter and maintain a beneficial human gut microbiota, but it is not known whether the architecture of the cell wall influences the gut microbiota population. In this study, wheat flour cell walls (WCW) were isolated and compared with their major constituents - arabinoxylan (AX), mixed linkage (1,3)(1,4)-ß-glucan (MLG) and cellulose - both separately and as a physical mixture of polysaccharides (Mix) equivalent in composition to WCW. These samples underwent in vitro fermentation with a faecal inoculum from pigs fed a diet free of cereals and soluble-fibre to avoid prior adaptation to substrates. During fermentation, samples were collected for DNA extraction and 16S rRNA gene amplicon sequencing. Bioinformatics analyses revealed that the microbial communities promoted during fermentation by AX, MLG, Mix and WCW were similar at the genus level, but differed from the microbiota observed for the cellulose substrate. Differences in proportions of propionate and butyrate end-products were associated with differences in the relative levels of genera. These findings show that, in this experiment, the microbes that flourished were able to utilize diverse WCW polysaccharides alone, in mixtures or in intact cell walls in a similar way, but that different fermentation end-products were associated with AX (propionate) or MLG (butyrate) polysaccharides.


Assuntos
Parede Celular/química , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Células Vegetais/química , Polissacarídeos/farmacologia , Triticum , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , DNA Bacteriano/genética , Fezes/microbiologia , Fermentação , Masculino , Polissacarídeos/química , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Suínos
10.
Foods ; 9(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371245

RESUMO

Fruit and vegetable polyphenols are associated with health benefits, and those not absorbed could be fermented by the gastro-intestinal tract microbiota. Many fermentation studies focus on "pure" polyphenols, rather than those associated with plant cell walls (PCW). Black carrots (BlkC), are an ideal model plant food as their polyphenols bind to PCW with minimal release after gastro-intestinal digestion. BlkC were fractionated into three components-supernatant, pellet after centrifugation, and whole puree. Bacterial cellulose (BCell) was soaked in supernatant (BCell&S) as a model substrate. All substrates were fermented in vitro with a pig faecal inoculum. Gas kinetics, short chain fatty acids, and ammonium production, and changes in anthocyanins and phenolic acids were compared. This study showed that metabolism of BlkC polyphenols during in vitro fermentation was not affected by cellulose/cell wall association. In addition, BCell&S is an appropriate model to represent BlkC fermentation, suggesting the potential to examine fermentability of PCW-associated polyphenols in other fruits/vegetables.

11.
Animals (Basel) ; 11(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33374896

RESUMO

Optimizing gut health has a large impact on nutrient digestibility and bioavailability, and super-dosing feed enzymes may be one solution to achieve this. A 42-day grow-out trial was conducted using 192 Ross 308 broilers to determine if super-dosing Natuzyme at 0 g/t, 350 g/t, 700 g/t, and 1000 g/t dose rates could improve the gut morphology, alter the cecal microbial profile, enhance bone mineralization, and improve nutrient digestibility of a wheat-corn-soybean diet (six replicates per treatment, eight birds per pen). One bird per pen was slaughtered at day 42 and gut morphology, cecal microbial profile, and nutrient digestibility were studied. The addition of enzymes tended to increase the villus height in the duodenum, villus height, width, and crypt depth in the jejunum, and villus width and the number of goblet cells in the ileum. Microbial profiling revealed diverse communities; however, they did not significantly differ between treatment groups. Yet, 700 g/t Natuzyme promoted microbes belonging to the genus Romboutsia and Ruminococcus gauvreauii, while 1000 g/t Natuzyme promoted Barnesiella species. The nutrient digestibility demonstrated a significant improvement in all enzyme doses compared to the control. In conclusion, based on the outcomes of this study, a dose rate of 700 g/t Natuzyme is recommended to improve gut morphology and nutrient digestibility, and promote unique microbes which aid in feed efficiency.

12.
Nat Commun ; 11(1): 4692, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943624

RESUMO

Hemicelluloses, a family of heterogeneous polysaccharides with complex molecular structures, constitute a fundamental component of lignocellulosic biomass. However, the contribution of each hemicellulose type to the mechanical properties of secondary plant cell walls remains elusive. Here we homogeneously incorporate different combinations of extracted and purified hemicelluloses (xylans and glucomannans) from softwood and hardwood species into self-assembled networks during cellulose biosynthesis in a bacterial model, without altering the morphology and the crystallinity of the cellulose bundles. These composite hydrogels can be therefore envisioned as models of secondary plant cell walls prior to lignification. The incorporated hemicelluloses exhibit both a rigid phase having close interactions with cellulose, together with a flexible phase contributing to the multiscale architecture of the bacterial cellulose hydrogels. The wood hemicelluloses exhibit distinct biomechanical contributions, with glucomannans increasing the elastic modulus in compression, and xylans contributing to a dramatic increase of the elongation at break under tension. These diverging effects cannot be explained solely from the nature of their direct interactions with cellulose, but can be related to the distinct molecular structure of wood xylans and mannans, the multiphase architecture of the hydrogels and the aggregative effects amongst hemicellulose-coated fibrils. Our study contributes to understanding the specific roles of wood xylans and glucomannans in the biomechanical integrity of secondary cell walls in tension and compression and has significance for the development of lignocellulosic materials with controlled assembly and tailored mechanical properties.


Assuntos
Parede Celular/química , Celulose/química , Extratos Vegetais/química , Plantas/química , Polissacarídeos/química , Madeira/química , Configuração de Carboidratos , Sequência de Carboidratos , Catárticos/química , Citoesqueleto/química , Hidrogéis/química , Mananas , Xilanos/química
13.
Food Funct ; 11(9): 7892-7904, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32813756

RESUMO

Using in vitro fermentation conditions, this study investigated the fermentation characteristics of arabinoxylan (AX) and xyloglucan (XG) with a fecal inoculum that was collected either from humans consuming unrestricted diets or pigs fed a semi-defined diet with cellulose being the sole non-starch polysaccharide for 10 days prior to fecal collection. Metagenomic analysis revealed that microbial communities in the two types of inoculum were distinctively different, which led to distinct fermentation characteristics with the polysaccharides. The microbial communities fermented with the porcine fecal inoculum were clustered according to the fermentation time, while those fermented with the human fecal inoculum were differentiated by the substrates. Using the porcine fecal inoculum, irrespective of the substrates, Prevotella copri and the unclassified lineage rc4-4 were the dominant operational taxonomic units (OTUs) promoted during fermentation. Fermentation of wheat AX (WAX) and galacto-XG (GXG) with the human fecal inoculum, however, promoted different OTUs, except for a shared OTU belonging to Lachnospiraceae. Specifically, WAX promoted the growth of Bacteroides plebeius and a Blautia sp., while GXG promoted an unclassified Bacteroidales, Parabacteroides distasonis, Bacteroides uniformis and Bacteroides sp. 2. These changes in bacterial communities were in accordance with the short chain fatty acid (SCFA) production, where comparable SCFA profiles were obtained from the porcine fecal fermentation while different amounts and proportions of SCFA were acquired from fermentation of WAX and GXG with the human fecal inoculum. Altogether, this study indicated that the starting inoculum composition had a greater effect than polysaccharide chemistry in driving fermentation outcomes.


Assuntos
Fezes/microbiologia , Fermentação , Galactose/metabolismo , Glucanos/metabolismo , Xilanos/metabolismo , Adulto , Animais , Bacteroides , Bacteroidetes , Dieta , Ácidos Graxos Voláteis , Humanos , Microbiota , Pessoa de Meia-Idade , Prevotella , Suínos , Adulto Jovem
14.
Methods Mol Biol ; 2149: 73-87, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32617930

RESUMO

Komagataeibacter xylinus synthesizes cellulose in an analogous fashion to plants. Through fermentation of K. xylinus in media containing cell wall polysaccharides from the hemicellulose and/or pectin families, composites with cellulose can be produced. These serve as general models for the assembly, structure, and properties of plant cell walls. By studying structure/property relationships of cellulose composites, the effects of defined hemicellulose and/or pectin polysaccharide structures can be investigated. The macroscopic nature of the composites also allows composite mechanical properties to be characterized.The method for producing cellulose-based composites involves reviving and then culturing K. xylinus in the presence of desired hemicelluloses and/or pectins. Different conditions are required for construction of hemicellulose- and pectin-containing composites. Fermentation results in a floating mat or pellicle of cellulose-based composite that can be recovered, washed, and then studied under hydrated conditions without any need for intermediate drying.


Assuntos
Acetobacteraceae/metabolismo , Celulose/metabolismo , Fermentação , Pectinas/metabolismo , Polissacarídeos/metabolismo , Celulose/biossíntese , Deutério/metabolismo , Glucanos/metabolismo , Xilanos/metabolismo
15.
Food Funct ; 11(6): 5635-5646, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32537617

RESUMO

A slower rate of starch digestion in the small intestine increases the amount of resistant starch (RS) entering the large intestine, which is associated with health benefits. Although increasing the amylose (AM) content of dietary starch intake is one way to increase RS, the processes involved in gut microbial hydrolysis and fermentation of high AM-RS substrates are poorly understood. In this study, five high AM wheat (HAW) starches ranging from 47% AM to 93% AM and a wild type (37% AM), in both native granular and cooked forms, were subjected to in vitro fermentation with a porcine faecal inoculum. Fermentation kinetics, temporal microbial changes, amylolytic enzyme activities and residual starch were determined. All granular starches showed similar fermentation characteristics, independent of AM level, whereas cooking accelerated fermentation of lower AM but slowed fermentation of high AM starches. HAW starches with a very high AM content (>85%) all had similar fermentation kinetics and short-chain fatty acid end-product profiles. Microbial α-amylase, ß-amylase, pullulanase and amyloglucosidase enzymatic activities were all detected and followed fermentation kinetics. HAW starch promoted shifts in the microbial community, with increases of the family Lachnospiraceae and the genus Treponema observed, while the genera Prevotella and Streptococcus were reduced in comparison to 37% AM. Overall, these findings suggest that any HAW starch incorporated into high RS food products would be expected to have beneficial microbiota-mediated effects in terms of fermentation kinetics and end products.


Assuntos
Amilose/metabolismo , Digestão , Fermentação , Microbiota/fisiologia , Amido/química , Triticum/química , Animais , Bactérias , Carboidratos da Dieta/análise , Ácidos Graxos Voláteis/análise , Fezes/microbiologia , Glucana 1,4-alfa-Glucosidase , Glicosídeo Hidrolases , Cinética , Suínos , alfa-Amilases/metabolismo , beta-Amilase
16.
Food Funct ; 11(1): 834-845, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31932826

RESUMO

A substantial fraction of ingested polyphenols accumulate in the large intestine (LI), attached to undigested plant cell walls (PCW) (dietary fibre). Yet, whether these PCW-bound polyphenols alter the structure and function of the resident microbiota remains unclear. This study characterised bacterial populations during the in vitro fermentation of three standard polyphenols: ferulic acid (FER), (±)-catechin (CAT), and cyanidin-3-glucoside (CYAN), adsorbed individually or in combination to apple cell walls (ACW). During fermentation with porcine faeces, samples were collected at regular time-points (up to 72 hours) for bacterial 16S rRNA gene amplicon sequencing and fermentation end-product analyses (short-chain fatty acids and ammonium). The metabolic end-products differed to only a small extent between substrates, though significantly for propionate (P < 0.0001). Significant differences in microbial populations were noted between substrates tested (P < 0.0001). The presence of cyanidin-3-glucoside resulted in the most significant differences between bacterial communities during fermentation of the ACW substrate. Key microbes identified to be associated with the ACW with adsorbed polyphenols as well as individual polyphenols were: Phascolarctobacterium with ACW + FER and FER, the Lachnospiraceae family with ACW + CYAN, Parabacteroides with ACW + CYAN and CYAN, Collinsella and Coprococcus with ACW + CAT, and the Clostridiales order with ACW + CAT and CAT. This study has demonstrated the use of a simplified model to indicate any microbial effects of polyphenols associated with dietary fibre in whole fruits. This work has shown that individual polyphenols, or those adsorbed to PCW, have potentially very different effects on the gut bacteria. Future work could examine further polyphenols associated with a range of fresh fruits.


Assuntos
Fibras na Dieta/farmacologia , Fermentação/efeitos dos fármacos , Malus , Polifenóis/farmacologia , Animais , Parede Celular/química , Fezes/microbiologia , Técnicas In Vitro , Masculino , Células Vegetais/química , Polifenóis/química , Suínos
17.
Biomacromolecules ; 20(11): 4180-4190, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31518115

RESUMO

Bacterial cellulose (BC) consists of a complex three-dimensional organization of ultrafine fibers which provide unique material properties such as softness, biocompatibility, and water-retention ability, of key importance for biomedical applications. However, there is a poor understanding of the molecular features modulating the macroscopic properties of BC gels. We have examined chemically pure BC hydrogels and composites with arabinoxylan (BC-AX), xyloglucan (BC-XG), and high molecular weight mixed-linkage glucan (BC-MLG). Atomic force microscopy showed that MLG greatly reduced the mechanical stiffness of BC gels, while XG and AX did not exert a significant effect. A combination of advanced solid-state NMR methods allowed us to characterize the structure of BC ribbons at ultra-high resolution and to monitor local mobility and water interactions. This has enabled us to unravel the effect of AX, XG, and MLG on the short-range order, mobility, and hydration of BC fibers. Results show that BC-XG hydrogels present BC fibrils of increased surface area, which allows BC-XG gels to hold higher amounts of bound water. We report for the first time that the presence of high molecular weight MLG reduces the density of clusters of BC fibrils and dramatically increases water interactions with BC. Our data supports two key molecular features determining the reduced stiffness of BC-MLG hydrogels, that is, (i) the adsorption of MLG on the surface of BC fibrils precluding the formation of a dense network and (ii) the preorganization of bound water by MLG. Hence, we have produced and fully characterized BC-MLG hydrogels with novel properties which could be potentially employed as renewable materials for applications requiring high water retention capacity (e.g. personal hygiene products).


Assuntos
Celulose/química , Glucanos/química , Hidrogéis/farmacologia , Bactérias/enzimologia , Celulose/farmacologia , Glucanos/farmacologia , Hidrogéis/química , Espectroscopia de Ressonância Magnética , Fenômenos Mecânicos/efeitos dos fármacos , Microscopia de Força Atômica , Peso Molecular , Xilanos/química , Xilanos/farmacologia
18.
J Anim Sci Biotechnol ; 10: 45, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31149336

RESUMO

This review describes dietary fibres originating from a range of foods, particularly in relation to their plant cell walls. It explores the categorization of dietary fibres into "soluble" or "insoluble". It also emphasizes dietary fibre fermentability, in terms of describing how the gastro-intestinal tract (GIT) microbiota respond to a selection of fibres from these categories. Food is categorized into cereals, legumes, fruits and vegetables. Mention is also made of example whole foods and why differences in physico-chemical characteristics between "purified" and "non-purified" food components are important in terms of health. Lastly, recommendations are made as to how dietary fibre could be classified differently, in relation to its functionality in terms of fermentability, rather than only its solubility.

19.
Carbohydr Polym ; 201: 575-582, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30241855

RESUMO

Arabinoxylan (AX) and xyloglucan (XG) are important components of primary cell walls of cereal grains and vegetables/fruits, respectively. Despite the established health benefits of these non-starch polysaccharides, the mechanisms of their utilisation by the gut microbiota are poorly understood. In this study, the mechanisms of solubilised wheat AX and tamarind XG degradation were investigated under in vitro fermentation conditions using a porcine faecal inoculum. Through structural analysis of the polymers, we demonstrate that depolymerisation by microbial surface accessible endo-degrading enzymes occurs prior to active fermentation of AX or XG. Breakdown products are released into the medium and potentially utilised cooperatively by other microbes. Acetate and propionate are the main fermentation products and are produced concurrently with polysaccharide depletion. Butyrate, however, is produced more slowly consistent with it being a secondary metabolite.

20.
mSphere ; 3(3)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29769378

RESUMO

Starch is a major source of energy in the human diet and is consumed in diverse forms. Resistant starch (RS) escapes small intestinal digestion and is fermented in the colon by the resident microbiota, with beneficial impacts on colonic function and host health, but the impacts of the micro- and nanoscale structure of different physical forms of food starch on the broader microbial community have not been described previously. Here, we use a porcine in vitro fermentation model to establish that starch structure dramatically impacts microbiome composition, including the key amylolytic species, and markedly alters both digestion kinetics and fermentation outcomes. We show that three characteristic food forms of starch that survive digestion in the small intestine each give rise to substantial and distinct changes in the microbiome and in fermentation products. Our results highlight the complexity of starch fermentation processes and indicate that not all forms of RS in foods are degraded or fermented in the same way. This work points the way for the design of RS with tailored degradation by defined microbial communities, informed by an understanding of how substrate structure influences the gut microbiome, to improve nutritive value and/or health benefits.IMPORTANCE Dietary starch is a major component in the human diet. A proportion of the starch in our diet escapes digestion in the small intestine and is fermented in the colon. In this study, we use a model of the colon, seeded with porcine feces, in which we investigate the fermentation of a variety of starches with structures typical of those found in foods. We show that the microbial community changes over time in our model colon are highly dependent on the structure of the substrate and how accessible the starch is to colonic microbes. These findings have important implications for how we classify starches reaching the colon and for the design of foods with improved nutritional properties.


Assuntos
Análise de Alimentos , Microbioma Gastrointestinal/efeitos dos fármacos , Amido/administração & dosagem , Amido/metabolismo , Animais , Fermentação , Modelos Biológicos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...