Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(3): 101670, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35120929

RESUMO

Xylan is the most common hemicellulose in plant cell walls, though the structure of xylan polymers differs between plant species. Here, to gain a better understanding of fungal xylan degradation systems, which can enhance enzymatic saccharification of plant cell walls in industrial processes, we conducted a comparative study of two glycoside hydrolase family 3 (GH3) ß-xylosidases (Bxls), one from the basidiomycete Phanerochaete chrysosporium (PcBxl3), and the other from the ascomycete Trichoderma reesei (TrXyl3A). A comparison of the crystal structures of the two enzymes, both with saccharide bound at the catalytic center, provided insight into the basis of substrate binding at each subsite. PcBxl3 has a substrate-binding pocket at subsite -1, while TrXyl3A has an extra loop that contains additional binding subsites. Furthermore, kinetic experiments revealed that PcBxl3 degraded xylooligosaccharides faster than TrXyl3A, while the KM values of TrXyl3A were lower than those of PcBxl3. The relationship between substrate specificity and degree of polymerization of substrates suggested that PcBxl3 preferentially degrades xylobiose (X2), while TrXyl3A degrades longer xylooligosaccharides. Moreover, docking simulation supported the existence of extended positive subsites of TrXyl3A in the extra loop located at the N-terminus of the protein. Finally, phylogenetic analysis suggests that wood-decaying basidiomycetes use Bxls such as PcBxl3 that act efficiently on xylan structures from woody plants, whereas molds use instead Bxls that efficiently degrade xylan from grass. Our results provide added insights into fungal efficient xylan degradation systems.


Assuntos
Ascomicetos , Phanerochaete , Xilanos , Xilosidases , Ascomicetos/enzimologia , Ascomicetos/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Phanerochaete/enzimologia , Phanerochaete/genética , Filogenia , Especificidade por Substrato , Xilanos/metabolismo , Xilosidases/química , Xilosidases/genética , Xilosidases/metabolismo
2.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 12): 787-796, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30511673

RESUMO

The glycoside hydrolase family 3 (GH3) ß-glucosidases are a structurally diverse family of enzymes. Cel3A from Neurospora crassa (NcCel3A) belongs to a subfamily of key enzymes that are crucial for industrial biomass degradation. ß-Glucosidases hydrolyse the ß-1,4 bond at the nonreducing end of cellodextrins. The hydrolysis of cellobiose is of special importance as its accumulation inhibits other cellulases acting on crystalline cellulose. Here, the crystal structure of the biologically relevant dimeric form of NcCel3A is reported. The structure has been refined to 2.25 Šresolution, with an Rcryst and Rfree of 0.18 and 0.22, respectively. NcCel3A is an extensively N-glycosylated glycoprotein that shares 46% sequence identity with Hypocrea jecorina Cel3A, the structure of which has recently been published, and 61% sequence identity with the thermophilic ß-glucosidase from Rasamsonia emersonii. NcCel3A is a three-domain protein with a number of extended loops that deepen the active-site cleft of the enzyme. These structures characterize this subfamily of GH3 ß-glucosidases and account for the high cellobiose specificity of this subfamily.


Assuntos
Glicosídeo Hidrolases/química , Neurospora crassa/química , beta-Glucosidase/química , Cristalização , Glicosídeo Hidrolases/biossíntese , Neurospora crassa/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , beta-Glucosidase/biossíntese
3.
J Biol Chem ; 289(45): 31624-37, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25164811

RESUMO

Cellulase mixtures from Hypocrea jecorina are commonly used for the saccharification of cellulose in biotechnical applications. The most abundant ß-glucosidase in the mesophilic fungus Hypocrea jecorina is HjCel3A, which hydrolyzes the ß-linkage between two adjacent molecules in dimers and short oligomers of glucose. It has been shown that enhanced levels of HjCel3A in H. jecorina cellulase mixtures benefit the conversion of cellulose to glucose. Biochemical characterization of HjCel3A shows that the enzyme efficiently hydrolyzes (1,4)- as well as (1,2)-, (1,3)-, and (1,6)-ß-D-linked disaccharides. For crystallization studies, HjCel3A was produced in both H. jecorina (HjCel3A) and Pichia pastoris (Pp-HjCel3A). Whereas the thermostabilities of HjCel3A and Pp-HjCel3A are the same, Pp-HjCel3A has a higher degree of N-linked glycosylation. Here, we present x-ray structures of HjCel3A with and without glucose bound in the active site. The structures have a three-domain architecture as observed previously for other glycoside hydrolase family 3 ß-glucosidases. Both production hosts resulted in HjCel3A structures that have N-linked glycosylations at Asn(208) and Asn(310). In H. jecorina-produced HjCel3A, a single N-acetylglucosamine is present at both sites, whereas in Pp-HjCel3A, the P. pastoris-produced HjCel3A enzyme, the glycan chains consist of 8 or 4 saccharides. The glycosylations are involved in intermolecular contacts in the structures derived from either host. Due to the different sizes of the glycosylations, the interactions result in different crystal forms for the two protein forms.


Assuntos
Proteínas Fúngicas/química , Glucosidases/química , Hypocrea/enzimologia , beta-Glucosidase/química , Biomassa , Domínio Catalítico , Celulase/química , Cristalografia por Raios X , Glucose/química , Glucosídeos/química , Glicosilação , Ligação de Hidrogênio , Hidrólise , Ligantes , Espectrometria de Massas , Nitrobenzenos/química , Oligossacarídeos/química , Pichia/metabolismo , Especificidade por Substrato , Temperatura , Xilose/análogos & derivados , Xilose/química
4.
J Biol Chem ; 288(8): 5861-72, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23303184

RESUMO

Root rot fungi of the Heterobasidion annosum complex are the most damaging pathogens in temperate forests, and the recently sequenced Heterobasidion irregulare genome revealed over 280 carbohydrate-active enzymes. Here, H. irregulare was grown on biomass, and the most abundant protein in the culture filtrate was identified as the only family 7 glycoside hydrolase in the genome, which consists of a single catalytic domain, lacking a linker and carbohydrate-binding module. The enzyme, HirCel7A, was characterized biochemically to determine the optimal conditions for activity. HirCel7A was crystallized and the structure, refined at 1.7 Å resolution, confirms that HirCel7A is a cellobiohydrolase rather than an endoglucanase, with a cellulose-binding tunnel that is more closed than Phanerochaete chrysosporium Cel7D and more open than Hypocrea jecorina Cel7A, suggesting intermediate enzyme properties. Molecular simulations were conducted to ascertain differences in enzyme-ligand interactions, ligand solvation, and loop flexibility between the family 7 glycoside hydrolase cellobiohydrolases from H. irregulare, H. jecorina, and P. chrysosporium. The structural comparisons and simulations suggest significant differences in enzyme-ligand interactions at the tunnel entrance in the -7 to -4 binding sites and suggest that a tyrosine residue at the tunnel entrance of HirCel7A may serve as an additional ligand-binding site. Additionally, the loops over the active site in H. jecorina Cel7A are more closed than loops in the other two enzymes, which has implications for the degree of processivity, endo-initiation, and substrate dissociation. Overall, this study highlights molecular level features important to understanding this biologically and industrially important family of glycoside hydrolases.


Assuntos
Celulose 1,4-beta-Celobiosidase/metabolismo , Glicosídeo Hidrolases/fisiologia , Phanerochaete/metabolismo , Árvores/microbiologia , Trichoderma/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Biocombustíveis , Celulase/química , Celulase/metabolismo , Celulose/metabolismo , Simulação por Computador , Cristalografia por Raios X/métodos , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Hypocrea/metabolismo , Ligantes , Conformação Molecular , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
5.
Biochem Biophys Res Commun ; 382(2): 430-3, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19285960

RESUMO

Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) can additionally sensitize human cancer cell lines towards the anti-cancer drug gemcitabine. We show that this property is based on the Dm-dNK ability to efficiently phosphorylate gemcitabine. The 2.2A resolution structure of Dm-dNK in complex with gemcitabine shows that the residues Tyr70 and Arg105 play a crucial role in the firm positioning of gemcitabine by extra interactions made by the fluoride atoms. This explains why gemcitabine is a good substrate for Dm-dNK.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Drosophila melanogaster/enzimologia , Resistencia a Medicamentos Antineoplásicos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Desoxicitidina/química , Desoxicitidina/metabolismo , Desoxicitidina/farmacologia , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Gencitabina
6.
J Mol Biol ; 369(3): 653-64, 2007 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-17448496

RESUMO

The salvage of deoxyribonucleosides in the social amoeba Dictyostelium discoideum, which has an extremely A+T-rich genome, was investigated. All native deoxyribonucleosides were phosphorylated by D. discoideum cell extracts and we subcloned three deoxyribonucleoside kinase (dNK) encoding genes. D. discoideum thymidine kinase was similar to the human thymidine kinase 1 and was specific for thymidine with a K(m) of 5.1 microM. The other two cloned kinases were phylogenetically closer to bacterial deoxyribonucleoside kinases than to the eukaryotic enzymes. D. discoideum deoxyadenosine kinase (DddAK) had a K(m) for deoxyadenosine of 22.7 microM and a k(cat) of 3.7 s(-1) and could not efficiently phosphorylate any other native deoxyribonucleoside. D. discoideum deoxyguanosine kinase was also a purine-specific kinase and phosphorylated significantly only deoxyguanosine, with a K(m) of 1.4 microM and a k(cat) of 3 s(-1). The two purine-specific deoxyribonucleoside kinases could represent ancient enzymes present in the common ancestor of bacteria and eukaryotes but remaining only in a few eukaryote lineages. The narrow substrate specificity of the D. discoideum dNKs reflects the biased genome composition and we attempted to explain the strict preference of DddAK for deoxyadenosine by modeling the active center with different substrates. Apart from its native substrate, deoxyadenosine, DddAK efficiently phosphorylated fludarabine. Hence, DddAK could be used in the enzymatic production of fludarabine monophosphate, a drug used in the treatment of chronic lymphocytic leukemia.


Assuntos
Desoxirribonucleosídeos/química , Dictyostelium/metabolismo , Regulação da Expressão Gênica , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Purinas/química , Animais , Antineoplásicos/farmacologia , Diferenciação Celular , Dictyostelium/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Proteínas Recombinantes/química , Especificidade por Substrato , Vidarabina/análogos & derivados , Vidarabina/química
7.
Nucleic Acids Res ; 33(21): 6920-30, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16332695

RESUMO

Divalent metal ions promote hydrolysis of RNA backbones generating 5'OH and 2';3'P as cleavage products. In these reactions, the neighboring 2'OH act as the nucleophile. RNA catalyzed reactions also require divalent metal ions and a number of different metal ions function in RNA mediated cleavage of RNA. In one case, the LZV leadzyme, it was shown that this catalytic RNA requires lead for catalysis. So far, none of the naturally isolated ribozymes have been demonstrated to use lead to activate the nucleophile. Here we provide evidence that RNase P RNA, a naturally trans-acting ribozyme, has leadzyme properties. But, in contrast to LZV RNA, RNase P RNA mediated cleavage promoted by Pb2+ results in 5' phosphate and 3'OH as cleavage products. Based on our findings, we infer that Pb2+ activates H2O to act as the nucleophile and we identified residues both in the substrate and RNase P RNA that most likely influenced the positioning of Pb2+ at the cleavage site. Our data suggest that Pb2+ can promote cleavage of RNA by activating either an inner sphere H2O or a neighboring 2'OH to act as nucleophile.


Assuntos
Chumbo/química , RNA Catalítico/química , Ribonuclease P/química , Sequência de Bases , Cátions Bivalentes/química , Proteínas de Escherichia coli/metabolismo , Cinética , Magnésio/química , Dados de Sequência Molecular , Purinas/química , RNA/química , RNA/metabolismo , RNA Catalítico/metabolismo , Ribonuclease P/metabolismo
8.
Proc Natl Acad Sci U S A ; 101(52): 17970-5, 2004 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-15611477

RESUMO

Cytosolic thymidine kinase 1, TK1, is a well known cell-cycle-regulated enzyme of importance in nucleotide metabolism as well as an activator of antiviral and anticancer drugs such as 3'-azido-3'-deoxythymidine (AZT). We have now determined the structures of the TK1 family, the human and Ureaplasma urealyticum enzymes, in complex with the feedback inhibitor dTTP. The TK1s have a tetrameric structure in which each subunit contains an alpha/beta-domain that is similar to ATPase domains of members of the RecA structural family and a domain containing a structural zinc. The zinc ion connects beta-structures at the root of a beta-ribbon that forms a stem that widens to a lasso-type loop. The thymidine of dTTP is hydrogen-bonded to main-chain atoms predominantly coming from the lasso loop. This binding is in contrast to other deoxyribonucleoside kinases where specific interactions occur with side chains. The TK1 structure differs fundamentally from the structures of the other deoxyribonucleoside kinases, indicating a different evolutionary origin.


Assuntos
Mycoplasma/enzimologia , Timidina Quinase/química , Sequência de Aminoácidos , Antimetabólitos/farmacologia , Sítios de Ligação , Cristalização , Desoxirribonucleosídeos/química , Evolução Molecular , Humanos , Ligação de Hidrogênio , Íons , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Nucleotídeos de Timina/química , Ureaplasma urealyticum/enzimologia , Zidovudina/farmacologia , Zinco/química
9.
Biochemistry ; 42(19): 5706-12, 2003 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-12741827

RESUMO

Deoxyribonucleoside kinases are feedback inhibited by the final products of the salvage pathway, the deoxyribonucleoside triphosphates. In the present study, the mechanism of feedback inhibition is presented based on the crystal structure of a complex between the fruit fly deoxyribonucleoside kinase and its feedback inhibitor deoxythymidine triphosphate. The inhibitor was found to be bound as a bisubstrate inhibitor with its nucleoside part in the nucleoside binding site and with its phosphate groups partially occupying the phosphate donor site. The overall structure of the enzyme--inhibitor complex is very similar to the enzyme--substrate complexes with deoxythymidine and deoxycytidine, except for a conformational change within a region otherwise directly involved in catalysis. This conformational change involves a magnesium ion, which is coordinated in the inhibitor complex to the phosphates and to the primary base, Glu52, that normally is positioned close to the 5'-OH of the substrate deoxyribose.


Assuntos
Desoxirribonucleosídeos/metabolismo , Drosophila melanogaster/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/química , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Cristalografia por Raios X , Drosophila melanogaster/genética , Retroalimentação , Cinética , Modelos Moleculares , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eletricidade Estática , Nucleotídeos de Timina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...