Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 266(Pt 1): 131168, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552694

RESUMO

Pharmaceuticals, designed for treating diseases, ironically endanger humans and aquatic ecosystems as pollutants. Adsorption-based wastewater treatment could address this problem, however, creating efficient adsorbents remains a challenge. Recent efforts have shifted towards sustainable bio-based adsorbents. Here, cryogels from lignin-containing cellulose nanofibrils (LCNF) and lignin nanoparticles (LNPs) were explored as pharmaceuticals adsorbents. An enzyme-based approach using laccase was used for crosslinking instead of fossil-based chemical modification. The impact of laccase treatment on LNPs alone produced surface-crosslinked water-insoluble LNPs with preserved morphology and a hemicellulose-rich, water-soluble LNP fraction. The water-insoluble LNPs displayed a significant increase in adsorption capacity, up to 140 % and 400 % for neutral and cationic drugs, respectively. The crosslinked cryogel prepared by one-pot incubation of LNPs, LCNF and laccase showed significantly higher adsorption capacities for various pharmaceuticals in a multi-component system than pure LCNF or unmodified cryogels. The crosslinking minimized the leaching of LNPs in water, signifying enhanced binding between LNPs and LCNF. In real wastewater, the laccase-modified cryogel displayed 8-44 % removal for cationic pharmaceuticals. Overall, laccase treatment facilitated the production of bio-based adsorbents by improving the deposition of LNPs to LCNF. Finally, this work introduces a sustainable approach for engineering adsorbents, while aligning with global sustainability goals.


Assuntos
Celulose , Criogéis , Lacase , Lignina , Nanopartículas , Poluentes Químicos da Água , Adsorção , Criogéis/química , Lignina/química , Lacase/química , Celulose/química , Nanopartículas/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Preparações Farmacêuticas/química , Águas Residuárias/química , Reagentes de Ligações Cruzadas/química
2.
J Agric Food Chem ; 72(7): 3495-3505, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38343302

RESUMO

Birch wood-derived fiber extracts containing glucuronoxylans (GX) and polyphenols show potential for various food technological applications. This study investigated the effect of two extracts, GXpoly and pureGX, differing in lignin content on colonic barrier function. Healthy rats were fed diets containing 10% GXpoly, pureGX, or cellulose for 4 weeks. Colon crypt depth was lower in the GX groups than in the control group, but in the proximal colon, the result was significant only in GXpoly. An artificial intelligence approach was established to measure the mucus content and goblet cells. In the distal colon, their amounts were higher in the control group than in the GX groups. All diets had a similar effect on the expression of the tight junction proteins occludin, claudin-1, and claudin-7. GXpoly enhanced the fecal IgA production. Our results suggest that GX-rich extracts could support the colonic barrier and work as functional food ingredients in the future.


Assuntos
Betula , Colo , Xilanos , Ratos , Animais , Colo/metabolismo , Mucosa Intestinal/metabolismo , Polifenóis/metabolismo , Inteligência Artificial , Madeira , Proliferação de Células
3.
Antioxidants (Basel) ; 12(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38136171

RESUMO

Nanomedicine's advent has promised to revolutionize different biomedical fields, including oncology. Silver Nanoparticles (AgNPs) showed promising results in different tumor models. Clear cell Renal Cell Carcinoma (ccRCC) is especially challenging due to its late diagnosis, poor prognosis and treatment resistance. Therefore, defining new therapeutic targets and regimens could improve patient management. This study intends to evaluate AgNPs' effect in ccRCC cells and explore their potential combinatory effect with Everolimus and Radiotherapy. AgNPs were synthesized, and their effect was evaluated regarding their entering pathway, cellular proliferation capacity, ROS production, mitochondrial membrane depolarization, cell cycle analysis and apoptosis assessment. AgNPs were combined with Everolimus or used to sensitize cells to radiotherapy. AgNPs are cytotoxic to 786-O cells, a ccRCC cell line, entering through endocytosis, increasing ROS, depolarizing mitochondrial membrane, and blocking the cell cycle, leading to a reduction of proliferation capacity and apoptosis. Combined with Everolimus, AgNPs reduce cell viability and inhibit proliferation capacity. Moreover, 786-O is intrinsically resistant to radiation, but after AgNPs' administration, radiation induces cytotoxicity through mitochondrial membrane depolarization and S phase blockage. These results demonstrate AgNPs' cytotoxic potential against ccRCC and seem promising regarding the combination with Everolimus and sensitization to radiotherapy, which can, in the future, benefit ccRCC patients' management.

4.
Cellulose (Lond) ; 30(14): 8955-8971, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37736116

RESUMO

Nanocellulose is very hydrophilic, preventing interactions with the oil phase in Pickering emulsions. This limitation is herein addressed by incorporating lignin nanoparticles (LNPs) as co-stabilizers of nanocellulose-based Pickering emulsions. LNP addition decreases the oil droplet size and slows creaming at pH 5 and 8 and with increasing LNP content. Emulsification at pH 3 and LNP cationization lead to droplet flocculation and rapid creaming. LNP application for emulsification, prior or simultaneously with nanocellulose, favors stability given the improved interactions with the oil phase. The Pickering emulsions can be freeze-dried, enabling the recovery of a solid macroporous foam that can act as adsorbent for pharmaceutical pollutants. Overall, the properties of nanocellulose-based Pickering emulsions and foams can be tailored by LNP addition. This strategy offers a unique, green approach to stabilize biphasic systems using bio-based nanomaterials without tedious and costly modification procedures. Supplementary Information: The online version contains supplementary material available at 10.1007/s10570-023-05399-y.

5.
Carbohydr Polym ; 321: 121316, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739540

RESUMO

Galactoglucomannans (GGM) recovered from abundant forest industry side-streams has been widely recognized as a renewable hydrocolloid. The low molar mass and presence of O-acetyl side-groups results in low viscous dispersions and weak intermolecular interactions that make GGM unsuitable for hydrogel formation, unless forcefully chemically derivatized and/or crosslinked with other polymers. Here we present the characterization of hydrogels prepared from GGM after tailoring the degree of acetylation by alkaline treatment during its recovery. Specifically, we investigated gel characteristics of low-acetyl GGM dispersions prepared at varied solid concentrations (5, 10 and 15 %) and pH (4, 7 and 10), and then subjected to ultrasonication. The results indicated that low-acetyl GGM dispersions formed gels (G' > G″) at all other studied solid concentration and pH level combinations except 5 % and pH 4. High pH levels, leading to further removal of acetyl groups, and high solid concentration facilitated the gel formation. GGM hydrogels were weak gels with strong shear-thinning behavior and thixotropic properties, and high hardness and water holding capacity; which were enhanced with increased pH and solid concentration, and prolonged storage time. Our study showed the possibility to utilize low-acetyl GGM as mildly processed gelling or thickening agents, and renewable materials for bio-based hydrogels.


Assuntos
Hidrogéis , Picea , Mananas , Acetilação , Dureza
6.
J Microbiol Methods ; 212: 106794, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37541446

RESUMO

Mycelium-based materials have attracted growing interest, facilitating their development for various new applications. Finding for suitable fungal species and strains enables further technical breakthroughs in their development and quality control. Here, we developed a model solid-state culture system to screen fungal strains efficiently for mycelium-based materials production. A piece of silicone-coated paper set on the general agar plate allows for isolation of the mycelial mat from the substrate. The mycelial growth and density can be evaluated by weighing the mycelial mat. We used the paper substrate after fungal incubation to investigate the relationship between substrate degradation and the contact time with hyphae. It yielded further insights into the fungal decay. Ten basidiomycetes were assessed for their fungal growth and degradation behaviour of the substrate using this method. Pleurotus floridanus FBCC375 showed a dense and elastic mycelial mat and mild degradation of the substrate. A unique decay behaviour was found in Hypsizygus ulmarius FBCC573 and Trametes versicolor FBCC564. They indicated a positional imbalance in the decay activity within the colony. This simple method is helpful for screening fungal strains and facilitates the further development of mycelium-based materials.


Assuntos
Micélio , Trametes , Ágar/metabolismo
7.
Mol Nutr Food Res ; 67(20): e2300201, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37650878

RESUMO

SCOPE: While previously considered inert, recent studies suggest lignin metabolism with unknown metabolic fates is occurring in the gastrointestinal tract of several animal models. This study focuses on analyzing the potential metabolites of lignin. METHODS AND RESULTS: The diets of rats include relatively pure birch glucuronoxylan (pureGX) with residual lignin or lignin-rich GX (GXpoly) in their diet. Nuclear magnetic spectroscopy of the lignin isolated from the GXpoly-fed rats fecal sample shows high alteration in chemical structure, whereas lignin-carbohydrate complexes (LCCs) are enriched in fecal samples from the pureGX group. Moreover, the increased syringyl-to-guaiacyl (S/G) ratio suggests that lignin G-units are predominantly metabolized based on pyrolysis gas chromatography-mass spectrometry (pyr-GC/MS). The presence of small phenolic metabolites identified in urine samples of the GXpoly group, for example, ferulic and sinapic acids, their sulfate and glucuronide derivatives, and 4-sulfobenzylalcohol, suggests that the small fragmented lignin metabolites in the large intestine enter the plasma, and are further processed in the liver. Finally, the relative abundances of polyphenol-degrading Enterorhabdus and Akkermansia in the gut microbiota are associated with lignin metabolism. CONCLUSION: These findings give further evidence to lignin metabolism in the gut of nonruminants and provide insight to the potential microbes and metabolic routes.


Assuntos
Betula , Lignina , Ratos , Animais , Lignina/química , Lignina/metabolismo , Betula/metabolismo , Fibras na Dieta , Xilanos
8.
J Agric Food Chem ; 71(6): 2667-2683, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36724217

RESUMO

A holistic utilization of all lignocellulosic wood biomass, instead of the current approach of using only the cellulose fraction, is crucial for the efficient, ecological, and economical use of the forest resources. Use of wood constituents in the food and feed sector is a potential way of promoting the global economy. However, industrially established food products utilizing such components are still scarce, with the exception of cellulose derivatives. Hemicelluloses that include xylans and mannans are major constituents of wood. The wood hemicelluloses are structurally similar to hemicelluloses from crops, which are included in our diet, for example, as a part of dietary fibers. Hence, structurally similar wood hemicelluloses have the potential for similar uses. We review the current status and future potential of wood hemicelluloses as food ingredients. We include an inventory of the extraction routes of wood hemicelluloses, their physicochemical properties, and some of their gastrointestinal characteristics, and we also consider the regulatory route that research findings need to follow to be approved for food solutions, as well as the current status of the wood hemicellulose applications on that route.


Assuntos
Ingredientes de Alimentos , Ingredientes de Alimentos/análise , Madeira/química , Polissacarídeos/química , Celulose/química
9.
Food Res Int ; 164: 112333, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737926

RESUMO

The most commonly-used and effective wall materials (WMs) for spray-dried microencapsulation of bioactive compounds are either costly, or derived from unsustainable sources, which lead to an increasing demand for alternatives derived from sustainable and natural sources, with low calories and low cost. Wood hemicelluloses obtained from by-products of forest industries appear to be attractive alternatives as they have been reported to have good emulsifying properties, low viscosity at high concentrations, high heat stability and low heat transfer. Here, we investigated the applicability of spruce galactoglucomannans (GGM) and birch glucuronoxylans (GX), to encapsulate flaxseed oil (FO, polyunsaturated fatty acid-rich plant based oil) by spray drying; and the results were compared to those of the highly effective WM, gum Arabic (GA). It was found that depending on solid ratios of WM:FO (1:1, 3:1 and 5:1), encapsulation efficiency of GGM was 88-96%, and GX was 63-98%. At the same encapsulation ratio, both GGM and GX had higher encapsulation efficiency than GA (49-92%) due to their ability to produce feed emulsions with a smaller oil droplet size and higher physical stability. In addition, the presence of phenolic residues in GGM and GX powders enabled them to have a greater ability to protect oil from oxidation during spray drying than GA. Physiochemical properties of encapsulated powders including thermal properties, morphology, molecular structure, particle size and water adsorption intake are also investigated. The study has explored a new value-added proposition for wood hemicelluloses which can be used as effective WMs in the production of microcapsules of polyunsaturated fatty acid-rich oils for healthy and functional products in food, pharmaceutical and cosmetic industries.


Assuntos
Dessecação , Madeira , Pós , Dessecação/métodos , Óleos de Plantas/química , Ácidos Graxos Insaturados
10.
Appl Environ Microbiol ; 89(1): e0186322, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36645281

RESUMO

Microbial expansin-related proteins are ubiquitous across bacterial and fungal organisms and reportedly play a role in the modification and deconstruction of cell wall polysaccharides, including lignocellulose. So far, very few microbial expansin-related proteins, including loosenins and loosenin-like (LOOL) proteins, have been functionally characterized. Herein, four LOOLs encoded by Phanerochaete carnosa and belonging to different subfamilies (i.e., PcaLOOL7 and PcaLOOL9 from subfamily A and PcaLOOL2 and PcaLOOL12 from subfamily B) were recombinantly produced and the purified proteins were characterized using diverse cellulose and chitin substrates. The purified PcaLOOLs weakened cellulose filter paper and cellulose nanofibril networks (CNF); however, none significantly boosted cellulase activity on the selected cellulose substrates (Avicel and Whatman paper). Although fusing the family 63 carbohydrate-binding module (CBM63) of BsEXLX1 encoded by Bacillus subtilis to PcaLOOLs increased their binding to cellulose, the CBM63 fusion appeared to reduce the cellulose filter paper weakening observed using wild-type proteins. Binding of PcaLOOLs to alpha-chitin was considerably higher than that to cellulose (Avicel) and was pH dependent, with the highest binding at pH 5.0. Amendment of certain PcaLOOLs in fungal liquid cultivations also impacted the density of the cultivated mycelia. The present study reveals the potential of fungal expansin-related proteins to impact both cellulose and chitin networks and points to a possible biological role in fungal cell wall processing. IMPORTANCE The present study deepens investigations of microbial expansin-related proteins and their applied significance by (i) reporting a detailed comparison of diverse loosenins encoded by the same organism, (ii) considering both cellulosic and chitin-containing materials as targeted substrates, and (iii) investigating the impact of the C-terminal carbohydrate binding module (CBM) present in other expansin-related proteins on loosenin function. By revealing the potential of fungal loosenins to impact both cellulose and chitin-containing networks, our study reveals a possible biological and applied role of loosenins in fungal cell wall processing.


Assuntos
Celulose , Phanerochaete , Celulose/metabolismo , Quitina , Phanerochaete/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
11.
J Environ Manage ; 330: 117210, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608603

RESUMO

Adsorption is a relatively simple wastewater treatment method that has the potential to mitigate the impacts of pharmaceutical pollution. This requires the development of reusable adsorbents that can simultaneously remove pharmaceuticals of varying chemical structure and properties. Here, the adsorption potential of nanostructured wood-based adsorbents towards different pharmaceuticals in a multi-component system was investigated. The adsorbents in the form of macroporous cryogels were prepared by anchoring lignin nanoparticles (LNPs) to the nanocellulose network via electrostatic attraction. The naturally anionic LNPs were anchored to cationic cellulose nanofibrils (cCNF) and the cationic LNPs (cLNPs) were combined with anionic TEMPO-oxidized CNF (TCNF), producing two sets of nanocellulose-based cryogels that also differed in their overall surface charge density. The cryogels, prepared by freeze-drying, showed layered cellulosic sheets randomly decorated with spherical lignin on the surface. They exhibited varying selectivity and efficiency in removing pharmaceuticals with differing aromaticity, polarity and ionic characters. Their adsorption potential was also affected by the type (unmodified or cationic), amount and morphology of the lignin nanomaterials, as well as the pH of the pharmaceutical solution. Overall, the findings revealed that LNPs or cLNPs can act as functionalizing and crosslinking agents to nanocellulose-based cryogels. Despite the decrease in the overall positive surface charge, the addition of LNPs to the cCNF-based cryogels showed enhanced adsorption, not only towards the anionic aromatic pharmaceutical diclofenac but also towards the aromatic cationic metoprolol (MPL) and tramadol (TRA) and neutral aromatic carbamazepine. The addition of cLNPs to TCNF-based cryogels improved the adsorption of MPL and TRA despite the decrease in the net negative surface charge. The improved adsorption was attributed to modes of removal other than electrostatic attraction, and they could be π-π aromatic ring or hydrophobic interactions brought by the addition of LNPs or cLNPs. However, significant improvement was only found if the ratio of LNPs or cLNPs to nanocellulose was 0.6:1 or higher and with spherical lignin nanomaterials. As crosslinking agents, the LNPs or cLNPs affected the rheological behavior of the gels, and increased the firmness and decreased the water holding capacity of the corresponding cryogels. The resistance of the cryogels towards disintegration with exposure to water also improved with crosslinking, which eventually enabled the cryogels, especially the TCNF-based one, to be regenerated and reused for five cycles of adsorption-desorption experiment for the model pharmaceutical MPL. Thus, this study opened new opportunities to utilize LNPs in providing nanocellulose-based adsorbents with additional functional groups, which were otherwise often achieved by rigorous chemical modifications, at the same time, crosslinking the nanocellulose network.


Assuntos
Poluentes Ambientais , Nanopartículas , Poluentes Químicos da Água , Lignina/química , Criogéis/química , Celulose , Água , Adsorção , Poluentes Químicos da Água/química
12.
Crit Rev Food Sci Nutr ; 63(24): 6983-7015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35213281

RESUMO

Natural bioactive compounds (BCs) are types of chemicals found in plants and certain foods that promote good health, however they are sensitive to processing and environmental conditions. Microencapsulation by spray drying is a widely used and cost-effective approach to create a coating layer to surround and protect BCs and control their release, enabling the production of high functional products/ingredients with extended shelf life. In this process, wall materials determine protection efficiency, and physical properties, bioavailability, and storage stability of microencapsulated products. Therefore, an understanding of physicochemical properties of wall materials is essential for the successful and effective spray-dried microencapsulation process. Typically, polysaccharide-based wall materials are generated from more sustainable sources and have a wider range of physicochemical properties and applications compared to their protein-based counterparts. In this review, we highlight the essential physicochemical properties of polysaccharide-based wall materials for spray-dried microencapsulation of BCs including solubility, thermal stability, and emulsifying properties, rheological and film forming properties. We provide further insight into possibilities for the chemical structure modification of native wall materials and their controlled release behaviors. Finally, we summarize the most recent studies involving polysaccharide biopolymers as wall materials and/or emulsifiers in spray-dried microencapsulation of BCs.


Assuntos
Extratos Vegetais , Polissacarídeos , Polissacarídeos/química , Extratos Vegetais/química , Alimentos , Solubilidade
13.
Int J Nanomedicine ; 17: 4321-4337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147546

RESUMO

Purpose: Silver nanoparticles (AgNPs) have shown great potential as anticancer agents, namely in therapies' resistant forms of cancer. The progression of prostate cancer (PCa) to resistant forms of the disease (castration-resistant PCa, CRPC) is associated with poor prognosis and life quality, with current limited therapeutic options. CRPC is characterized by a high glucose consumption, which poses as an opportunity to direct AgNPs to these cancer cells. Thus, this study explores the effect of glucose functionalization of AgNPs in PCa and CRPC cell lines (LNCaP, Du-145 and PC-3). Methods: AgNPs were synthesized, further functionalized, and their physical and chemical composition was characterized both in water and in culture medium, through UV-visible spectrum, dynamic light scattering (DLS), transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR). Their effect was assessed in the cell lines regarding AgNPs' entering pathway, cellular proliferation capacity, ROS production, mitochondrial membrane depolarization, cell cycle analysis and apoptosis evaluation. Results: AgNPs displayed an average size of 61nm and moderate monodispersity with a slight increase after functionalization, and a round shape. These characteristics remained stable when redispersed in culture medium. Both AgNPs and G-AgNPs were cytotoxic only to CRPC cells and not to hormone-sensitive ones and their effect was higher after functionalization showing the potential of glucose to favor AgNPs' uptake by cancer cells. Entering through endocytosis and being encapsulated in lysosomes, the NPs increased the ROS, inducing mitochondrial damage, and arresting cell cycle in S Phase, therefore blocking proliferation, and inducing apoptosis. Conclusion: The nanoparticles synthesized in the present study revealed good characteristics and stability for administration to cancer cells. Their uptake through endocytosis leads to promising cytotoxic effects towards CRPC cells, revealing the potential of G-AgNPs as a future therapeutic approach to improve the management of patients with PCa resistant to hormone therapy or metastatic disease.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Neoplasias de Próstata Resistentes à Castração , Antineoplásicos/química , Antineoplásicos/farmacologia , Glucose , Hormônios , Humanos , Masculino , Nanopartículas Metálicas/química , Extratos Vegetais/química , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Espécies Reativas de Oxigênio , Prata/química , Prata/farmacologia , Água
14.
Carbohydr Polym ; 292: 119660, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35725206

RESUMO

Xylan is a biopolymer readily available from forest resources. Various modification methods, including oxidation with sodium periodate, have been shown to facilitate the engineering applications of xylan. However, modification procedures are often optimized for semicrystalline high molecular weight polysaccharide cellulose rather than for lower molecular weight and amorphous polysaccharide xylan. This paper elucidates the procedure for the periodate oxidation of xylan into dialdehyde xylan and its further reduction into a dialcohol form and is focused on the modification work up. The oxidation-reduction reaction decreased the molecular weight of xylan while increased the dispersity more than 50%. Unlike the unmodified xylan, all the modified grades could be solubilized in water, which we see essential for facilitating the future engineering applications of xylan. The selection of quenching and purification procedures and pH-adjustment of the reduction step had no significant effect on the degree of oxidation, molecular weight and only a minor effect on the hydrodynamic radius in water. Hence, it is possible to choose the simplest oxidation-reduction route without time consuming purification steps within the sequence.


Assuntos
Polissacarídeos , Xilanos , Celulose , Oxirredução , Polissacarídeos/química , Água/química , Xilanos/química
16.
Food Funct ; 13(8): 4770, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35380149

RESUMO

Correction for 'Gut microbiota can utilize prebiotic birch glucuronoxylan in production of short-chain fatty acids in rats' by Emma Kynkäänniemi et al., Food Funct., 2022, 13, 3746-3759, DOI: 10.1039/D1FO03922A.

17.
Food Funct ; 13(6): 3746-3759, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35266930

RESUMO

Birch-derived glucuronoxylan (GX)-rich hemicellulose extract is an abundantly available by-product of the forest industry. It has multifunctional food stabilizing properties, and is rich in fiber and polyphenols. Here, we studied its effects on colonic metabolism and gut microbiota in healthy rats. Male and female Wistar rats (n = 42) were fed AIN-93G-based diets with 10% (w/w) of either cellulose (control), a polyphenol and GX-rich extract (GXpoly), or a highly purified GX-rich extract (pureGX) for four weeks. Both the GXpoly and pureGX diets resulted in changes on the gut microbiota, especially in a higher abundance of Bifidobacteriaceae than the cellulose containing diet (p < 0.001). This coincided with higher concentrations of microbial metabolites in the luminal contents of the GX-fed than control rats, such as total short-chain fatty acids (SCFAs) (p < 0.001), acetate (p < 0.001), and N-nitroso compounds (NOCs) (p = 0.001). The difference in the concentration of NOCs was not seen when adjusted with fecal weight. GX supplementation supported the normal growth of the rats. Our results indicate that GXpoly and pureGX can favorably affect colonic metabolism and the gut microbiota. They have high potential to be used as prebiotic stabilizers to support more ecologically sustainable food production.


Assuntos
Microbioma Gastrointestinal , Animais , Betula/metabolismo , Ácidos Graxos Voláteis/metabolismo , Feminino , Masculino , Prebióticos , Ratos , Ratos Wistar , Xilanos
18.
Food Res Int ; 151: 110818, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980370

RESUMO

The biomass from cereal side streams is rich in valuable components, such as hemicelluloses. Among the hemicelluloses, arabinoxylans and ß-glucans are the most acknowledged for potential health benefits. Numerous publications discuss the potential to use purified forms of these hemicelluloses for various applications. However, as the purification of hemicelluloses may not be economically feasible to upscale, sustainable and cost-effective methods are needed to make their valorization more realistic for industrial applications. Co-components present in hemicellulose-rich fractions may also provide added functionality, such as flavonoid content and antioxidant capacity. This review provides an overview on the feasibility of sustainably upscaling hemicellulose extraction processes, focusing on by-products from different cereal streams. We describe the hemicelluloses' physicochemical properties and provide various possible applications of pure and impure fractions from small scale to pilot and industrial scale. Furthermore, real case examples on the industrial utilization of cereal side streams are enclosed. This review provides pathways for future research for developing the hemicellulose extraction methods to obtain fractions with optimized purity, and offers suggestions to valorize them.


Assuntos
Grão Comestível , Polissacarídeos , Biomassa , Fracionamento Químico
19.
Crit Rev Food Sci Nutr ; 62(18): 4908-4928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33543990

RESUMO

Nanoemulsion-based systems are widely applied in food industries for protecting active ingredients against oxidation and degradation and controlling the release rate of active core ingredients under particular conditions. Visualizing the interface morphology and measuring the interfacial interaction forces of nanoemulsion droplets are essential to tailor and design intelligent nanoemulsion-based systems. Atomic force microscopy (AFM) is being established as an important technique for interface characterization, due to its unique advantages over traditional imaging and surface force-determining approaches. However, there is a gap in knowledge about the applicability of AFM in characterizing the droplet interface properties of nanoemulsions. This review aims to describe the fundamentals of the AFM technique and nanoemulsions, mainly focusing on the recent use of AFM to investigate nanoemulsion properties. In addition, by reviewing interfacial studies on emulsions in general, perspectives for the further development of AFM to study nanoemulsions are also discussed.


Assuntos
Microscopia de Força Atômica , Emulsões , Microscopia de Força Atômica/métodos
20.
Adv Colloid Interface Sci ; 299: 102541, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34920366

RESUMO

Emulsions have gained significant importance in many industries including foods, pharmaceuticals, cosmetics, health care formulations, paints, polymer blends and oils. During emulsion generation, collisions can occur between newly-generated droplets, which may lead to coalescence between the droplets. The extent of coalescence is driven by the properties of the dispersed and continuous phases (e.g. density, viscosity, ion strength and pH), and system conditions (e.g. temperature, pressure or any external applied forces). In addition, the diffusion and adsorption behaviors of emulsifiers which govern the dynamic interfacial tension of the forming droplets, the surface potential, and the duration and frequency of the droplet collisions, contribute to the overall rate of coalescence. An understanding of these complex behaviors, particularly those of interfacial tension and droplet coalescence during emulsion generation, is critical for the design of an emulsion with desirable properties, and for the optimization of the processing conditions. However, in many cases, the time scales over which these phenomena occur are extremely short, typically a fraction of a second, which makes their accurate determination by conventional analytical methods extremely challenging. In the past few years, with advances in microfluidic technology, many attempts have demonstrated that microfluidic systems, characterized by micrometer-size channels, can be successfully employed to precisely characterize these properties of emulsions. In this review, current applications of microfluidic devices to determine the equilibrium and dynamic interfacial tension during droplet formation, and to investigate the coalescence stability of dispersed droplets applicable to the processing and storage of emulsions, are discussed.


Assuntos
Microfluídica , Óleos , Emulsificantes , Emulsões , Tensão Superficial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...