Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(14): 2789-2814, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38551452

RESUMO

The OH-initiated photo-oxidation of piperidine and the photolysis of 1-nitrosopiperidine were investigated in a large atmospheric simulation chamber and in theoretical calculations based on CCSD(T*)-F12a/aug-cc-pVTZ//M062X/aug-cc-pVTZ quantum chemistry results and master equation modeling of the pivotal reaction steps. The rate coefficient for the reaction of piperidine with OH radicals was determined by the relative rate method to be kOH-piperidine = (1.19 ± 0.27) × 10-10 cm3 molecule-1 s-1 at 304 ± 2 K and 1014 ± 2 hPa. Product studies show the piperidine + OH reaction to proceed via H-abstraction from both CH2 and NH groups, resulting in the formation of the corresponding imine (2,3,4,5-tetrahydropyridine) as the major product and in the nitramine (1-nitropiperidine) and nitrosamine (1-nitrosopiperidine) as minor products. Analysis of 1-nitrosopiperidine photolysis experiments under natural sunlight conditions gave the relative rates jrel = j1-nitrosoperidine/jNO2 = 0.342 ± 0.007, k3/k4a = 0.53 ± 0.05 and k2/k4a = (7.66 ± 0.18) × 10-8 that were subsequently employed in modeling the piperidine photo-oxidation experiments, from which the initial branchings between H-abstraction from the NH and CH2 groups, kN-H/ktot = 0.38 ± 0.08 and kC2-H/ktot = 0.49 ± 0.19, were derived. All photo-oxidation experiments were accompanied by particle formation that was initiated by the acid-base reaction of piperidine with nitric acid. Primary photo-oxidation products including both 1-nitrosopiperidine and 1-nitropiperidine were detected in the particles formed. Quantum chemistry calculations on the OH initiated atmospheric photo-oxidation of piperidine suggest the branching in the initial H-abstraction routes to be ∼35% N1, ∼50% C2, ∼13% C3, and ∼2% C4. The theoretical study produced an atmospheric photo-oxidation mechanism, according to which H-abstraction from the C2 position predominantly leads to 2,3,4,5-tetrahydropyridine and H-abstraction from the C3 position results in ring opening followed by a complex autoxidation, of which the first few steps are mapped in detail. H-abstraction from the C4 position is shown to result mainly in the formation of piperidin-4-one and 2,3,4,5-tetrahydropyridin-4-ol, whereas H-abstraction from N1 under atmospheric conditions primarily leads to 2,3,4,5-tetrahydropyridine and in minor amounts of 1-nitrosopiperidine and 1-nitropiperidine. The calculated rate coefficient for the piperidine + OH reaction agrees with the experimental value within 35%, and aligning the theoretical numbers to the experimental value results in k(T) = 2.46 × 10-12 × exp(486 K/T) cm3 molecule-1 s-1 (200-400 K).

2.
J Phys Chem A ; 126(20): 3247-3264, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35544412

RESUMO

The OH-initiated photo-oxidation of N-methylmethanimine, CH3N═CH2, was investigated in the 200 m3 EUPHORE atmospheric simulation chamber and in a 240 L stainless steel photochemical reactor employing time-resolved online FTIR and high-resolution PTR-ToF-MS instrumentation and in theoretical calculations based on quantum chemistry results and master equation modeling of the pivotal reaction steps. The quantum chemistry calculations forecast the OH reaction to primarily proceed via H-abstraction from the ═CH2 group and π-system C-addition, whereas H-abstraction from the -CH3 group is a minor route and forecast that N-addition can be disregarded under atmospheric conditions. Theoretical studies of CH3N═CH2 photolysis and the CH3N═CH2 + O3 reaction show that these removal processes are too slow to be important in the troposphere. A detailed mechanism for OH-initiated atmospheric degradation of CH3N═CH2 was obtained as part of the theoretical study. The photo-oxidation experiments, obstructed in part by the CH3N═CH2 monomer-trimer equilibrium, surface reactions, and particle formation, find CH2═NCHO and CH3N═CHOH/CH2═NCH2OH as the major primary products in a ratio 18:82 ± 3 (3σ-limit). Alignment of the theoretical results to the experimental product distribution results in a rate coefficient, showing a minor pressure dependency under tropospheric conditions and that can be parametrized k(T) = 5.70 × 10-14 × (T/298 K)3.18 × exp(1245 K/T) cm3 molecule-1 s-1 with k298 = 3.7 × 10-12 cm3 molecule-1 s-1. The atmospheric fate of CH3N═CH2 is discussed, and it is concluded that, on a global scale, hydrolysis in the atmospheric aqueous phase to give CH3NH2 + CH2O will constitute a dominant loss process. N2O will not be formed in the atmospheric gas phase degradation, and there are no indications of nitrosamines and nitramines formed as primary products.

3.
J Phys Chem A ; 125(34): 7502-7519, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34424704

RESUMO

The OH-initiated degradation of 2-amino-2-methyl-1-propanol [CH3C(NH2)(CH3)CH2OH, AMP] was investigated in a large atmospheric simulation chamber, employing time-resolved online high-resolution proton-transfer reaction-time-of-flight mass spectrometry (PTR-ToF-MS) and chemical analysis of aerosol online PTR-ToF-MS (CHARON-PTR-ToF-MS) instrumentation, and by theoretical calculations based on M06-2X/aug-cc-pVTZ quantum chemistry results and master equation modeling of the pivotal reaction steps. The quantum chemistry calculations reproduce the experimental rate coefficient of the AMP + OH reaction, aligning k(T) = 5.2 × 10-12 × exp (505/T) cm3 molecule-1 s-1 to the experimental value kexp,300K = 2.8 × 10-11 cm3 molecule-1 s-1. The theoretical calculations predict that the AMP + OH reaction proceeds via hydrogen abstraction from the -CH3 groups (5-10%), -CH2- group, (>70%) and -NH2 group (5-20%), whereas hydrogen abstraction from the -OH group can be disregarded under atmospheric conditions. A detailed mechanism for atmospheric AMP degradation was obtained as part of the theoretical study. The photo-oxidation experiments show 2-amino-2-methylpropanal [CH3C(NH2)(CH3)CHO] as the major gas-phase product and propan-2-imine [(CH3)2C═NH], 2-iminopropanol [(CH3)(CH2OH)C═NH], acetamide [CH3C(O)NH2], formaldehyde (CH2O), and nitramine 2-methyl-2-(nitroamino)-1-propanol [AMPNO2, CH3C(CH3)(NHNO2)CH2OH] as minor primary products; there is no experimental evidence of nitrosamine formation. The branching in the initial H abstraction by OH radicals was derived in analyses of the temporal gas-phase product profiles to be BCH3/BCH2/BNH2 = 6:70:24. Secondary photo-oxidation products and products resulting from particle and surface processing of the primary gas-phase products were also observed and quantified. All the photo-oxidation experiments were accompanied by extensive particle formation that was initiated by the reaction of AMP with nitric acid and that mainly consisted of this salt. Minor amounts of the gas-phase photo-oxidation products, including AMPNO2, were detected in the particles by CHARON-PTR-ToF-MS and GC×GC-NCD. Volatility measurements of laboratory-generated AMP nitrate nanoparticles gave ΔvapH = 80 ± 16 kJ mol-1 and an estimated vapor pressure of (1.3 ± 0.3) × 10-5 Pa at 298 K. The atmospheric chemistry of AMP is evaluated and a validated chemistry model for implementation in dispersion models is presented.

4.
Environ Sci Technol ; 55(12): 7776-7785, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34061518

RESUMO

Elevated reactive nitrogen (Nr) deposition is a concern for alpine ecosystems, and dry NH3 deposition is a key contributor. Understanding how emission hotspots impact downwind ecosystems through dry NH3 deposition provides opportunities for effective mitigation. However, direct NH3 flux measurements with sufficient temporal resolution to quantify such events are rare. Here, we measured NH3 fluxes at Rocky Mountain National Park (RMNP) during two summers and analyzed transport events from upwind agricultural and urban sources in northeastern Colorado. We deployed open-path NH3 sensors on a mobile laboratory and an eddy covariance tower to measure NH3 concentrations and fluxes. Our spatial sampling illustrated an upslope event that transported NH3 emissions from the hotspot to RMNP. Observed NH3 deposition was significantly higher when backtrajectories passed through only the agricultural region (7.9 ng m-2 s-1) versus only the urban area (1.0 ng m-2 s-1) and both urban and agricultural areas (2.7 ng m-2 s-1). Cumulative NH3 fluxes were calculated using observed, bidirectional modeled, and gap-filled fluxes. More than 40% of the total dry NH3 deposition occurred when air masses were traced back to agricultural source regions. More generally, we identified that 10 (25) more national parks in the U.S. are within 100 (200) km of an NH3 hotspot, and more observations are needed to quantify the impacts of these hotspots on dry NH3 deposition in these regions.


Assuntos
Poluentes Atmosféricos , Amônia , Poluentes Atmosféricos/análise , Amônia/análise , Colorado , Ecossistema , Monitoramento Ambiental
5.
J Phys Chem A ; 125(1): 411-422, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33378187

RESUMO

The OH-initiated photo-oxidation of piperazine and 1-nitropiperazine as well as the photolysis of 1-nitrosopiperazine were investigated in a large atmospheric simulation chamber. The rate coefficient for the reaction of piperazine with OH radicals was determined by the relative rate method to be kOH-piperazine = (2.8 ± 0.6) × 10-10 cm3 molecule-1 s-1 at 307 ± 2 K and 1014 ± 2 hPa. Product studies showed the piperazine + OH reaction to proceed both via C-H and N-H abstraction, resulting in the formation of 1,2,3,6-tetrahydropyrazine as the major product and in 1-nitropiperazine and 1-nitrosopiperazine as minor products. The branching in the piperazinyl radical reactions with NO, NO2, and O2 was obtained from 1-nitrosopiperazine photolysis experiments and employed analyses of the 1-nitropiperazine and 1-nitrosopiperazine temporal profiles observed during piperazine photo-oxidation. The derived initial branching between N-H and C-H abstraction by OH radicals, kN-H/(kN-H + kC-H), was 0.18 ± 0.04. All experiments were accompanied by substantial aerosol formation that was initiated by the reaction of piperazine with nitric acid. Both primary and secondary photo-oxidation products including 1-nitropiperazine and 1,4-dinitropiperazine were detected in the aerosol particles formed. Corroborating atmospheric photo-oxidation schemes for piperazine and 1-nitropiperazine were derived from M06-2X/aug-cc-pVTZ quantum chemistry calculations and master equation modeling of the pivotal reaction steps. The atmospheric chemistry of piperazine is evaluated, and a validated chemical mechanism for implementation in dispersion models is presented.

6.
J Phys Chem A ; 124(32): 6562-6571, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32663395

RESUMO

The reaction of CH3NC with OH radicals was studied in smog chamber experiments employing PTR-ToF-MS and long-path FTIR detection. The rate coefficient was determined to be kCH3NC+OH = (7.9 ± 0.6) × 10-11 cm3 molecule-1 s-1 at 298 ± 3 K and 1013 ± 10 hPa; methyl isocyanate was the sole observed product of the reaction. The experimental results are supported by CCSD(T*)-F12a/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ quantum chemistry calculations showing the reaction to proceed primarily via electrophilic addition to the isocyanide carbon atom. On the basis of the quantum chemical data, the kinetics of the OH reaction was simulated using a master equation model revealing the rate coefficient to be nearly independent of pressure at tropospheric conditions and having a negative temperature dependence with kOH = 4.2 × 10-11 cm3 molecule-1 s-1 at 298 K. Additional quantum chemistry calculations on the CH3NC reactions with O3 and NO3 show that these reactions are of little importance under atmospheric conditions. The atmospheric fate of methyl isocyanide is discussed.

7.
Atmos Chem Phys ; 19(14): 9097-9123, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33688334

RESUMO

We apply a high-resolution chemical transport model (GEOS-Chem CTM) with updated treatment of volatile organic compounds (VOCs) and a comprehensive suite of airborne datasets over North America to (i) characterize the VOC budget and (ii) test the ability of current models to capture the distribution and reactivity of atmospheric VOCs over this region. Biogenic emissions dominate the North American VOC budget in the model, accounting for 70 % and 95 % of annually emitted VOC carbon and reactivity, respectively. Based on current inventories anthropogenic emissions have declined to the point where biogenic emissions are the dominant summertime source of VOC reactivity even in most major North American cities. Methane oxidation is a 2x larger source of nonmethane VOCs (via production of formaldehyde and methyl hydroperoxide) over North America in the model than are anthropogenic emissions. However, anthropogenic VOCs account for over half of the ambient VOC loading over the majority of the region owing to their longer aggregate lifetime. Fires can be a significant VOC source episodically but are small on average. In the planetary boundary layer (PBL), the model exhibits skill in capturing observed variability in total VOC abundance (R 2 = 0:36) and reactivity (R 2 = 0:54). The same is not true in the free troposphere (FT), where skill is low and there is a persistent low model bias (~ 60 %), with most (27 of 34) model VOCs underestimated by more than a factor of 2. A comparison of PBL: FT concentration ratios over the southeastern US points to a misrepresentation of PBL ventilation as a contributor to these model FT biases. We also find that a relatively small number of VOCs (acetone, methanol, ethane, acetaldehyde, formaldehyde, isoprene C oxidation products, methyl hydroperoxide) drive a large fraction of total ambient VOC reactivity and associated model biases; research to improve understanding of their budgets is thus warranted. A source tracer analysis suggests a current overestimate of biogenic sources for hydroxyacetone, methyl ethyl ketone and glyoxal, an underestimate of biogenic formic acid sources, and an underestimate of peroxyacetic acid production across biogenic and anthropogenic precursors. Future work to improve model representations of vertical transport and to address the VOC biases discussed are needed to advance predictions of ozone and SOA formation.

8.
J Phys Chem A ; 122(18): 4470-4480, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29659281

RESUMO

The OH-initiated atmospheric degradation of tert-butylamine (tBA), (CH3)3CNH2, was investigated in a detailed quantum chemistry study and in laboratory experiments at the European Photoreactor (EUPHORE) in Spain. The reaction was found to mainly proceed via hydrogen abstraction from the amino group, which in the presence of nitrogen oxides (NO x), generates tert-butylnitramine, (CH3)3CNHNO2, and acetone as the main reaction products. Acetone is formed via the reaction of tert-butylnitrosamine, (CH3)3CNHNO, and/or its isomer tert-butylhydroxydiazene, (CH3)3CN═NOH, with OH radicals, which yield nitrous oxide (N2O) and the (CH3)3C radical. The latter is converted to acetone and formaldehyde. Minor predicted and observed reaction products include formaldehyde, 2-methylpropene, acetamide and propan-2-imine. The reaction in the EUPHORE chamber was accompanied by strong particle formation which was induced by an acid-base reaction between photochemically formed nitric acid and the reagent amine. The tert-butylaminium nitrate salt was found to be of low volatility, with a vapor pressure of 5.1 × 10-6 Pa at 298 K. The rate of reaction between tert-butylamine and OH radicals was measured to be 8.4 (±1.7) × 10-12 cm3 molecule-1 s-1 at 305 ± 2 K and 1015 ± 1 hPa.

9.
Environ Sci Technol ; 52(8): 4969-4978, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29601722

RESUMO

The application of fuels from renewable sources ("alternative fuels") in aviation is important for the reduction of anthropogenic carbon dioxide emissions, but may also attribute to reduced release of particles from jet engines. The present experiment describes ground-based measurements in the framework of the ECLIF (Emission and Climate Impact of Alternative Fuels) campaign using an Airbus A320 (V2527-A5 engines) burning six fuels of chemically different composition. Two reference Jet A-1 with slightly different chemical parameters were applied and further used in combination with a Fischer-Tropsch synthetic paraffinic kerosene (FT-SPK) to prepare three semi synthetic jet fuels (SSJF) of different aromatic content. In addition, one commercially available fully synthetic jet fuel (FSJF) featured the lowest aromatic content of the fuel selection. Neither the release of nitrogen oxide or carbon monoxide was significantly affected by the different fuel composition. The measured particle emission indices showed a reduction up to 50% (number) and 70% (mass) for two alternative jet fuels (FSJF, SSJF2) at low power settings in comparison to the reference fuels. The reduction is less pronounced at higher operating conditions but the release of particle number and particle mass is still significantly lower for the alternative fuels than for both reference fuels. The observed correlation between emitted particle mass and fuel aromatics is not strict. Here, the H/C ratio is a better indicator for soot emission.


Assuntos
Aviação , Emissões de Veículos , Dióxido de Carbono , Monóxido de Carbono , Fuligem
10.
J Phys Chem A ; 120(8): 1222-30, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26859252

RESUMO

The kinetics of OH radical reaction with formamide was studied by the relative rate method employing proton transfer reaction-mass spectrometry detection at the European Photochemical Reactor in Valencia, Spain. The rate coefficient was determined to be (4.5 ± 0.4) × 10(-12) cm(3) molecule(-1) s(-1) at 309 ± 3 K and 1013 ± 1 hPa. Isocyanic acid was observed as the sole product. The experimental results are supported by quantum chemical calculations and kinetic simulations using a master equation model. The calculated rate coefficient is independent of pressure at tropospheric conditions and can be accurately described by an Arrhenius expression having negative activation energy. The reaction is predicted to proceed exclusively via C-H abstraction.

11.
J Phys Chem A ; 120(9): 1468-78, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26575342

RESUMO

NOx (NOx ≡ NO + NO2) regulates O3 and HOx (HOx ≡ OH + HO2) concentrations in the upper troposphere. In the laboratory, it is difficult to measure rates and branching ratios of the chemical reactions affecting NOx at the low temperatures and pressures characteristic of the upper troposphere, making direct measurements in the atmosphere especially useful. We report quasi-Lagrangian observations of the chemical evolution of an air parcel following a lightning event that results in high NOx concentrations. These quasi-Lagrangian measurements obtained during the Deep Convective Clouds and Chemistry experiment are used to characterize the daytime rates for conversion of NOx to different peroxy nitrates, the sum of alkyl and multifunctional nitrates, and HNO3. We infer the following production rate constants [in (cm(3)/molecule)/s] at 225 K and 230 hPa: 7.2(±5.7) × 10(-12) (CH3O2NO2), 5.1(±3.1) × 10(-13) (HO2NO2), 1.3(±0.8) × 10(-11) (PAN), 7.3(±3.4) × 10(-12) (PPN), and 6.2(±2.9) × 10(-12) (HNO3). The HNO3 and HO2NO2 rates are ∼ 30-50% lower than currently recommended whereas the other rates are consistent with current recommendations to within ±30%. The analysis indicates that HNO3 production from the HO2 and NO reaction (if any) must be accompanied by a slower rate for the reaction of OH with NO2, keeping the total combined rate for the two processes at the rate reported for HNO3 production above.

12.
J Geophys Res Atmos ; 121(21): 13088-13112, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32812915

RESUMO

In support of future satellite missions that aim to address the current shortcomings in measuring air quality from space, NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign was designed to enable exploration of relationships between column measurements of trace species relevant to air quality at high spatial and temporal resolution. In the DISCOVER-AQ data set, a modest correlation (r 2 = 0.45) between ozone (O3) and formaldehyde (CH2O) column densities was observed. Further analysis revealed regional variability in the O3-CH2O relationship, with Maryland having a strong relationship when data were viewed temporally and Houston having a strong relationship when data were viewed spatially. These differences in regional behavior are attributed to differences in volatile organic compound (VOC) emissions. In Maryland, biogenic VOCs were responsible for ~28% of CH2O formation within the boundary layer column, causing CH2O to, in general, increase monotonically throughout the day. In Houston, persistent anthropogenic emissions dominated the local hydrocarbon environment, and no discernable diurnal trend in CH2O was observed. Box model simulations suggested that ambient CH2O mixing ratios have a weak diurnal trend (±20% throughout the day) due to photochemical effects, and that larger diurnal trends are associated with changes in hydrocarbon precursors. Finally, mathematical relationships were developed from first principles and were able to replicate the different behaviors seen in Maryland and Houston. While studies would be necessary to validate these results and determine the regional applicability of the O3-CH2O relationship, the results presented here provide compelling insight into the ability of future satellite missions to aid in monitoring near-surface air quality.

13.
J Geophys Res Atmos ; 120(7): 2990-3005, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-26702368

RESUMO

Organosulfates are important secondary organic aerosol (SOA) components and good tracers for aerosol heterogeneous reactions. However, the knowledge of their spatial distribution, formation conditions, and environmental impact is limited. In this study, we report two organosulfates, an isoprene-derived isoprene epoxydiols (IEPOX) (2,3-epoxy-2-methyl-1,4-butanediol) sulfate and a glycolic acid (GA) sulfate, measured using the NOAA Particle Analysis Laser Mass Spectrometer (PALMS) on board the NASA DC8 aircraft over the continental U.S. during the Deep Convective Clouds and Chemistry Experiment (DC3) and the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS). During these campaigns, IEPOX sulfate was estimated to account for 1.4% of submicron aerosol mass (or 2.2% of organic aerosol mass) on average near the ground in the southeast U.S., with lower concentrations in the western U.S. (0.2-0.4%) and at high altitudes (<0.2%). Compared to IEPOX sulfate, GA sulfate was more uniformly distributed, accounting for about 0.5% aerosol mass on average, and may be more abundant globally. A number of other organosulfates were detected; none were as abundant as these two. Ambient measurements confirmed that IEPOX sulfate is formed from isoprene oxidation and is a tracer for isoprene SOA formation. The organic precursors of GA sulfate may include glycolic acid and likely have both biogenic and anthropogenic sources. Higher aerosol acidity as measured by PALMS and relative humidity tend to promote IEPOX sulfate formation, and aerosol acidity largely drives in situ GA sulfate formation at high altitudes. This study suggests that the formation of aerosol organosulfates depends not only on the appropriate organic precursors but also on emissions of anthropogenic sulfur dioxide (SO2), which contributes to aerosol acidity. KEY POINTS: IEPOX sulfate is an isoprene SOA tracer at acidic and low NO conditions Glycolic acid sulfate may be more abundant than IEPOX sulfate globally SO2 impacts IEPOX sulfate by increasing aerosol acidity and water uptake.

14.
Phys Chem Chem Phys ; 17(10): 7046-59, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25687949

RESUMO

The reactions of OH radicals with CH3NHCHO (N-methylformamide, MF) and (CH3)2NCHO (N,N-dimethylformamide, DMF) have been studied by experimental and computational methods. Rate coefficients were determined as a function of temperature (T = 260-295 K) and pressure (P = 30-600 mbar) by the flash photolysis/laser-induced fluorescence technique. OH radicals were produced by laser flash photolysis of 2,4-pentanedione or tert-butyl hydroperoxide under pseudo-first order conditions in an excess of the corresponding amide. The rate coefficients obtained show negative temperature dependences that can be parameterized as follows: kOH+MF = (1.3 ± 0.4) × 10(-12) exp(3.7 kJ mol(-1)/(RT)) cm(3) s(-1) and kOH+DMF = (5.5 ± 1.7) × 10(-13) exp(6.6 kJ mol(-1)/(RT)) cm(3) s(-1). The rate coefficient kOH+MF shows very weak positive pressure dependence whereas kOH+DMF was found to be independent of pressure. The Arrhenius equations given, within their uncertainty, are valid for the entire pressure range of our experiments. Furthermore, MF and DMF smog-chamber photo-oxidation experiments were monitored by proton-transfer-reaction time-of-flight mass spectrometry. Atmospheric MF photo-oxidation results in 65% CH3NCO (methylisocyanate), 16% (CHO)2NH, and NOx-dependent amounts of CH2[double bond, length as m-dash]NH and CH3NHNO2 as primary products, while DMF photo-oxidation results in around 35% CH3N(CHO)2 as primary product and 65% meta-stable (CH3)2NC(O)OONO2 degrading to NOx-dependent amounts of CH3N[double bond, length as m-dash]CH2 (N-methylmethanimine), (CH3)2NNO (N-nitroso dimethylamine) and (CH3)2NNO2 (N-nitro dimethylamine). The potential for nitramine formation in MF photo-oxidation is comparable to that of methylamine whereas the potential to form nitrosamine and nitramine in DMF photo-oxidation is larger than for dimethylamine. Quantum chemistry supported atmospheric degradation mechanisms for MF and DMF are presented. Rate coefficients and initial branching ratios calculated with statistical rate theory based on molecular data from quantum chemical calculations at the CCSD(T*)-F12a/aug-cc-pVTZ//MP2/aug-cc-pVTZ level of theory show satisfactory agreement with the experimental results. It turned out that adjustment of calculated threshold energies by 0.2 to 8.8 kJ mol(-1) lead to agreement between experimental and predicted results.

15.
J Phys Chem A ; 118(19): 3450-62, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24766577

RESUMO

The rates of CH3NHNO2 and (CH3)2NNO2 reaction with OH radicals were determined relative to CH3OCH3 and CH3OH at 298 ± 2 K and 1013 ± 10 hPa in purified air by long path FTIR spectroscopy, and the rate coefficients were determined to be k(OH+CH3NHNO2) = (9.5 ± 1.9) × 10(-13) and k(OH+(CH3)2NNO2) = (3.5 ± 0.7) × 10(-12) (2σ) cm(3) molecule(-1) s(-1). Ozone was found to react very slowly with the two nitramines, k(O3+nitramine) < 10(-21) cm(3) molecule(-1) s(-1). Product formation in the photo-oxidation of CH3NHNO2 and (CH3)2NNO2 was studied by FTIR, PTR-ToF-MS, and quantum chemistry calculations; the major products in the OH-initiated degradation are the corresponding imines, CH2═NH and CH3N═CH2, and N-nitro amides, CHONHNO2 and CHON(CH3)NO2. Atmospheric degradation mechanisms are presented.


Assuntos
Compostos de Anilina/química , Atmosfera/química , Dimetilaminas/química , Radical Hidroxila/química , Metilaminas/química , Nitrobenzenos/química , Teoria Quântica , Ozônio/química
16.
Anticancer Res ; 29(1): 419-26, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19331181

RESUMO

AIM: The aim of this work was to confirm the existence of volatile organic compounds (VOCs) specifically released by lung cancer cells. MATERIALS AND METHODS: NCI-H2087 cells were trypsinized and 100 x 10(6) cells were incubated in a sealed fermenter overnight. Samples from the headspace of the culture vessel were collected with simultaneous preconcentration by adsorption on solid sorbents and subsequently thermodesorbed for analysis by gas chromatography mass spectrometry (GC-MS). RESULTS: The results showed a significant increase in the concentration of 2-ethyl-1-hexanol and 2-methylpentane in the headspace as compared with medium controls. 2-Methylpentane is also found in exhaled breath of lung cancer patients in contrast to that from healthy volunteers. Statistically significantly lower abundances of acetaldehyde, 2-methylpropanal, 3-methylbutanal, 2-methylbutanal and butyl acetate were found. CONCLUSION: Our findings demonstrate that certain compounds can be cancer cell derived and thus may be indicative of the presence of a tumor. Some compounds were not released but seem to be consumed by cancer cells.


Assuntos
Neoplasias Pulmonares/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Linhagem Celular Tumoral , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Compostos Orgânicos Voláteis/análise
17.
Cancer Cell Int ; 8: 17, 2008 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19025629

RESUMO

BACKGROUND: The aim of this work was to confirm the existence of volatile organic compounds (VOCs) specifically released or consumed by lung cancer cells. METHODS: 50 million cells of the human non-small cell lung cancer (NSCLC) cell line CALU-1 were incubated in a sealed fermenter for 4 h or over night (18 hours). Then air samples from the headspace of the culture vessel were collected and preconcentrated by adsorption on solid sorbents with subsequent thermodesorption and analysis by means of gas chromatography mass spectrometry (GC-MS). Identification of altogether 60 compounds in GCMS measurement was done not only by spectral library match, but also by determination of retention times established with calibration mixtures of the respective pure compounds. RESULTS: The results showed a significant increase in the concentrations of 2,3,3-trimethylpentane, 2,3,5-trimethylhexane, 2,4-dimethylheptane and 4-methyloctane in the headspace of CALU-1 cell culture as compared to medium controls after 18 h. Decreased concentrations after 18 h of incubation were found for acetaldehyde, 3-methylbutanal, butyl acetate, acetonitrile, acrolein, methacrolein, 2-methylpropanal, 2-butanone, 2-methoxy-2-methylpropane, 2-ethoxy-2-methylpropane, and hexanal. CONCLUSION: Our findings demonstrate that certain volatile compounds can be cancer-cell derived and thus indicative of the presence of a tumor, whereas other compounds are not released but seem to be consumed by CALU-1 cells.

18.
Appl Environ Microbiol ; 74(7): 2179-86, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18245241

RESUMO

A method for analysis of volatile organic compounds (VOCs) from microbial cultures was established using proton transfer reaction-mass spectrometry (PTR-MS). A newly developed sampling system was coupled to a PTR-MS instrument to allow on-line monitoring of VOCs in the dynamic headspaces of microbial cultures. The novel PTR-MS method was evaluated for four reference organisms: Escherichia coli, Shigella flexneri, Salmonella enterica, and Candida tropicalis. Headspace VOCs in sampling bottles containing actively growing cultures and uninoculated culture medium controls were sequentially analyzed by PTR-MS. Characteristic marker ions were found for certain microbial cultures: C. tropicalis could be identified by several unique markers compared with the other three organisms, and E. coli and S. enterica were distinguishable from each other and from S. flexneri by specific marker ions, demonstrating the potential of this method to differentiate between even closely related microorganisms. Although the temporal profiles of some VOCs were similar to the growth dynamics of the microbial cultures, most VOCs showed a different temporal profile, characterized by constant or decreasing VOC levels or by single or multiple peaks over 24 h of incubation. These findings strongly indicate that the temporal evolution of VOC emissions during growth must be considered if characterization or differentiation based on microbial VOC emissions is attempted. Our study may help to establish the analysis of VOCs by on-line PTR-MS as a routine method in microbiology and as a tool for monitoring environmental and biotechnological processes.


Assuntos
Bactérias/metabolismo , Fungos/metabolismo , Espectrometria de Massas/métodos , Compostos Orgânicos/análise , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Monitoramento Ambiental/métodos , Fungos/crescimento & desenvolvimento , Fungos/isolamento & purificação , Prótons , Volatilização
19.
Environ Microbiol ; 8(11): 1960-74, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17014495

RESUMO

Malodorous emissions and potentially pathogenic microorganisms which develop during domestic organic waste collection are not only a nuisance but may also pose health risks. The aim of the present study was to determine whether the presence of specific microorganisms in biowastes is directly related to the composition of the emitted volatile organic compounds (VOCs). The succession of microbial communities during 16 days of storage in organic waste collection bins was studied by denaturing gradient gel electrophoresis (DGGE) of amplified 16S ribosomal DNA in parallel with a classical cultivation and isolation approach. Approximately 60 different bacterial species and 20 different fungal species were isolated. Additionally, some bacterial species were identified through sequencing of excised DGGE bands. Proton transfer reaction mass spectrometry (PTR-MS) was used to detect VOCs over the sampling periods, and co-inertia analyses of VOC concentrations with DGGE band intensities were conducted. Positive correlations, indicating production of the respective VOC or enhancement of microbial growth, and negative correlations, indicating the use of, or microbial inhibition by the respective compound, were found for the different VOCs. Measurement of the VOC emission pattern from a pure culture of Lactococcus lactis confirmed the positive correlations for the protonated masses 89 (tentatively identified as butyric acid), 63 (tentatively identified as dimethylsulfide), 69 (likely isoprene) and 73 (likely butanone).


Assuntos
Bactérias/metabolismo , Microbiologia Ambiental , Fungos/metabolismo , Compostos Orgânicos/análise , Resíduos , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Biodegradação Ambiental , Eletroforese/métodos , Fungos/crescimento & desenvolvimento , Fungos/isolamento & purificação , Genes de RNAr , Concentração de Íons de Hidrogênio , RNA Ribossômico 16S/genética , Temperatura , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...