Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Microb Cell ; 11: 1-15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38225947

RESUMO

FurE is a H+ symporter specific for the cellular uptake of uric acid, allantoin, uracil, and toxic nucleobase analogues in the fungus Aspergillus nidulans. Being member of the NCS1 protein family, FurE is structurally related to the APC-superfamily of transporters. APC-type transporters are characterised by a 5+5 inverted repeat fold made of ten transmembrane segments (TMS1-10) and function through the rocking-bundle mechanism. Most APC-type transporters possess two extra C-terminal TMS segments (TMS11-12), the function of which remains elusive. Here we present a systematic mutational analysis of TMS11-12 of FurE and show that two specific aromatic residues in TMS12, Trp473 and Tyr484, are essential for ER-exit and trafficking to the plasma membrane (PM). Molecular modeling shows that Trp473 and Tyr484 might be essential through dynamic interactions with residues in TMS2 (Leu91), TMS3 (Phe111), TMS10 (Val404, Asp406) and other aromatic residues in TMS12. Genetic analysis confirms the essential role of Phe111, Asp406 and TMS12 aromatic residues in FurE ER-exit. We further show that co-expression of FurE-Y484F or FurE-W473A with wild-type FurE leads to a dominant negative phenotype, compatible with the concept that FurE molecules oligomerize or partition in specific microdomains to achieve concentrative ER-exit and traffic to the PM. Importantly, truncated FurE versions lacking TMS11-12 are unable to reproduce a negative effect on the trafficking of co-expressed wild-type FurE. Overall, we show that TMS11-12 acts as an intramolecular chaperone for proper FurE folding, which seems to provide a structural code for FurE partitioning in ER-exit sites.

2.
J Med Chem ; 66(22): 15115-15140, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37943012

RESUMO

F1FO-ATP synthase is the mitochondrial complex responsible for ATP production. During myocardial ischemia, it reverses its activity, hydrolyzing ATP and leading to energetic deficit and cardiac injury. We aimed to discover novel inhibitors of ATP hydrolysis, accessing the druggability of the target within ischemia(I)/reperfusion(R) injury. New molecular scaffolds were revealed using ligand-based virtual screening methods. Fifty-five compounds were tested on isolated murine heart mitochondria and H9c2 cells for their inhibitory activity. A pyrazolo[3,4-c]pyridine hit structure was identified and optimized in a hit-to-lead process synthesizing nine novel derivatives. Three derivatives significantly inhibited ATP hydrolysis in vitro, while in vivo, they reduced myocardial infarct size (IS). The novel compound 31 was the most effective in reducing IS, validating that inhibition of F1FO-ATP hydrolytic activity can serve as a target for cardioprotection during ischemia. Further examination of signaling pathways revealed that the cardioprotection mechanism is related to the increased ATP content in the ischemic myocardium and increased phosphorylation of PKA and phospholamban, leading to the reduction of apoptosis.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Hidrólise , Trifosfato de Adenosina/metabolismo , Mitocôndrias Cardíacas/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-37935429

RESUMO

OBJECTIVES: Giant Cell Arteritis-(GCA) is an inflammatory disease following a chronic, relapsing course. The metabolic alterations related to the intense inflammatory process during the active phase and to the rapid impact of steroid treatment, remain unknown. The study aims to investigate the serum metabolome in active and inactive disease state. METHODS: 110 serum samples from 50 patients [33-GCA and 17-Polymyalgia rheumatica-(PMR)] at 3 time points, 0-(V1: active disease), 1 and 6 months-(V2 and V3: remission) of treatment with glucocorticosteroids (GCs), were subjected to Nuclear Magnetic Resonance (NMR)-based metabolomic analysis. Multi- and univariate statistical analyses were utilized to unveil metabolome alterations following treatment. RESULTS: Distinct metabolic profiles were identified between activity and remission, independently to disease type. N-acetylglycoproteins and cholines of bound phospholipids, emerged as predictive markers of disease activity. Altered levels of 4 out of the 21 small molecules were also observed, including increased levels of phenylalanine, and decreased of glutamine, alanine, and creatinine in active disease. Metabolic fingerprinting discriminated GCA from PMR in remission. GCA and PMR patients exhibited characteristic lipid alterations as a response and/or adverse effect of GCs treatment. Correlation analysis showed that several identified biomarkers were further associated with acute phase reactants, C-Reactive Protein and Erythrocyte Sedimentation Rate. CONCLUSION: The NMR profile of serum metabolome could identify and propose sensitive biomarkers of inflammation. Metabolome alterations, following GCs treatment, could provide predictors for future steroid-induced side effects.

4.
J Mol Biol ; 435(19): 168226, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544358

RESUMO

Transporters mediate the uptake of solutes, metabolites and drugs across the cell membrane. The eukaryotic FurE nucleobase/H+ symporter of Aspergillus nidulans has been used as a model protein to address structure-function relationships in the APC transporter superfamily, members of which are characterized by the LeuT-fold and seem to operate by the so-called 'rocking-bundle' mechanism. In this study, we reveal the binding mode, translocation and release pathway of uracil/H+ by FurE using path collective variable, funnel metadynamics and rational mutational analysis. Our study reveals a stepwise, induced-fit, mechanism of ordered sequential transport of proton and uracil, which in turn suggests that FurE, functions as a multi-step gated pore, rather than employing 'rocking' of compact domains, as often proposed for APC transporters. Finally, our work supports that specific residues of the cytoplasmic N-tail are involved in substrate translocation, in line with their essentiality for FurE function.


Assuntos
Proteínas de Membrana Transportadoras , Uracila , Transporte Biológico , Membrana Celular/metabolismo , Transporte de Íons , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Prótons , Uracila/metabolismo
5.
Molecules ; 28(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36838725

RESUMO

Extra virgin olive oil (EVOO) possesses a high-value rank in the food industry, thus making it a common target for adulteration. Hence, several methods have been essentially made available over the years. However, the issue of authentication remains unresolved with national and food safety organizations globally struggling to regulate and control its market. Over the course of this study, the aim was to determine the origin of EVOOs suggesting a high-throughput, state-of-the-art method that could be easily adopted. A rapid, NMR-based untargeted metabolite profiling method was applied and complemented by multivariate analysis (MVA) and statistical total correlation spectroscopy (STOCSY). STOCSY is a valuable statistical tool contributing to the biomarker identification process and was employed for the first time in EVOO analysis. Market samples from three Mediterranean countries of Spain, Italy, and Greece, blended samples from these countries, as well as monocultivar samples from Greece were analyzed. The NMR spectra were collected, with the help of chemometrics acting as "fingerprints" leading to the discovery of certain chemical classes and single biomarkers that were related to the classification of the samples into groups based on their origin.


Assuntos
Azeite de Oliva , Azeite de Oliva/química , Espectroscopia de Ressonância Magnética , Análise Multivariada , Itália , Espanha
6.
Metabolites ; 12(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36355113

RESUMO

The lipid composition of lipoprotein particles is determinative of their respective formation and function. In turn, the combination and correlation of nuclear magnetic resonance (NMR)-based lipoprotein measurements with mass spectrometry (MS)-based lipidomics is an appealing technological combination for a better understanding of lipid metabolism in health and disease. Here, we developed a combined workflow for subsequent NMR- and MS-based analysis on single sample aliquots of human plasma. We evaluated the quantitative agreement of the two platforms for lipid quantification and benchmarked our combined workflow. We investigated the congruence and complementarity between the platforms in order to facilitate a better understanding of patho-physiological lipoprotein and lipid alterations. We evaluated the correlation and agreement between the platforms. Next, we compared lipid class concentrations between healthy controls and rheumatoid arthritis patient samples to investigate the consensus among the platforms on differentiating the two groups. Finally, we performed correlation analysis between all measured lipoprotein particles and lipid species. We found excellent agreement and correlation (r > 0.8) between the platforms and their respective diagnostic performance. Additionally, we generated correlation maps detailing lipoprotein/lipid interactions and describe disease-relevant correlations.

7.
Foods ; 11(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36140981

RESUMO

Honey is a natural, healthy commodity and is probably among the most complex foods produced by nature. It is the oldest recorded and certainly the only natural sweetener that can be used by humans without any further processing. Nowadays, the increase in honey's value, along with its growing list of healthy attributes, has made the present raw material a prime target for adulteration. In the current study, NMR-based metabolite profiling in combination with chemometrics was applied in the quality control of Greek honeys from northeastern Aegean islands. Moreover, statistical total correlation spectroscopy (STOCSY) was employed for the first time as a dereplication and structural elucidation tool in the honey biomarker identification process. A total of 10 compounds were successfully identified in honey total extracts via 1H NMR spectroscopy. Compounds such as 5-(hydroxymethyl)furfural, methyl syringate, a mono-substituted glycerol derivative and 3-hydroxy-4-phenyl-2-butanone, among others, were identified as potential biomarkers related to the botanical and geographical origin of the samples. High-Resolution Mass Spectrometry (HRMS) was used as an additional verification tool on the identified compounds.

8.
Antioxidants (Basel) ; 11(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36009312

RESUMO

A number of stilbenoid and chalconoid derivatives were prepared by straightforward methods, and their ability to modulate tyrosinase activity and to scavenge free radicals were evaluated in vitro. The cell-free in vitro evaluation revealed two diarylpropanes, 24 and 25, as potent tyrosinase inhibitors, whereas diarylpropenoic acids seemed to enhance the enzymatic activity. An in silico evaluation of the binding affinity of the selected compounds with the crystal structure of tyrosinase was also conducted in order to obtain better insight into the mechanism. Representative synthetic compounds with inhibitory and activating properties were further evaluated in melanoma cell lines B16F1 and B16F10 for their ability to moderate tyrosinase activity and affect melanin production. Dihydrostilbene analogues I and II, exhibited a stronger anti-melanogenic effect than kojic acid through the inhibition of cellular tyrosinase activity and melanin formation, while diarylpropanoic acid 44 proved to be a potent melanogenic factor, inducing cellular tyrosinase activity and melanin formation. Moreover, the antioxidant evaluation disclosed two analogues (29 and 11) with significant free-radical-scavenging activity (12.4 and 20.3 µM), which were 10- and 6-fold more potent than ascorbic acid (122.1 µΜ), respectively.

9.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36015109

RESUMO

The development of novel agents to combat COVID-19 is of high importance. SARS-CoV-2 main protease (Mpro) is a highly attractive target for the development of novel antivirals and a variety of inhibitors have already been developed. Accumulating evidence on the pathobiology of COVID-19 has shown that lipids and lipid metabolizing enzymes are critically involved in the severity of the infection. The purpose of the present study was to identify an inhibitor able to simultaneously inhibit both SARS-CoV-2 Mpro and phospholipase A2 (PLA2), an enzyme which plays a significant role in inflammatory diseases. Evaluating several PLA2 inhibitors, we demonstrate that the previously known potent inhibitor of Group IIA secretory PLA2, GK241, may also weakly inhibit SARS-CoV-2 Mpro. Molecular mechanics docking and molecular dynamics calculations shed light on the interactions between GK241 and SARS-CoV-2 Mpro. 2-Oxoamide GK241 may represent a lead molecular structure for the development of dual PLA2 and SARS-CoV-2 Mpro inhibitors.

10.
Nitric Oxide ; 128: 12-24, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973674

RESUMO

Epigallocatechin gallate (EGCG) is the main bioactive component of green tea. Through screening of a small library of natural compounds, we discovered that EGCG inhibits cystathionine ß-synthase (CBS), a major H2S-generating enzyme. Here we characterize EGCG's mechanism of action in the context of CBS-derived H2S production. In the current project, biochemical, pharmacological and cell biology approaches were used to characterize the effect of EGCG on CBS in cellular models of cancer and Down syndrome (DS). The results show that EGCG binds to CBS and inhibits H2S-producing CBS activity almost 30-times more efficiently than the canonical cystathionine formation (IC50 0.12 versus 3.3 µM). Through screening structural analogs and building blocks, we identified that gallate moiety of EGCG represents the pharmacophore responsible for CBS inhibition. EGCG is a mixed-mode, CBS-specific inhibitor with no effect on the other two major enzymatic sources of H2S, CSE and 3-MST. Unlike the prototypical CBS inhibitor aminooxyacetate, EGCG does not bind the catalytic cofactor of CBS pyridoxal-5'-phosphate. Molecular modeling suggests that EGCG blocks a substrate access channel to pyridoxal-5'-phosphate. EGCG inhibits cellular H2S production in HCT-116 colon cancer cells and in DS fibroblasts. It also exerts effects that are consistent with the functional role of CBS in these cells: in HCT-116 cells it decreases, while in DS cells it improves viability and proliferation. In conclusion, EGCG is a potent inhibitor of CBS-derived H2S production. This effect may contribute to its pharmacological effects in various pathophysiological conditions.


Assuntos
Cistationina beta-Sintase , Sulfeto de Hidrogênio , Catequina/análogos & derivados , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Fosfatos , Piridoxal , Relação Estrutura-Atividade
11.
Cells ; 11(7)2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35406806

RESUMO

Vaccination is currently the most effective strategy for the mitigation of the COVID-19 pandemic. mRNA vaccines trigger the immune system to produce neutralizing antibodies (NAbs) against SARS-CoV-2 spike proteins. However, the underlying molecular processes affecting immune response after vaccination remain poorly understood, while there is significant heterogeneity in the immune response among individuals. Metabolomics have often been used to provide a deeper understanding of immune cell responses, but in the context of COVID-19 vaccination such data are scarce. Mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR)-based metabolomics were used to provide insights based on the baseline metabolic profile and metabolic alterations induced after mRNA vaccination in paired blood plasma samples collected and analysed before the first and second vaccination and at 3 months post first dose. Based on the level of NAbs just before the second dose, two groups, "low" and "high" responders, were defined. Distinct plasma metabolic profiles were observed in relation to the level of immune response, highlighting the role of amino acid metabolism and the lipid profile as predictive markers of response to vaccination. Furthermore, levels of plasma ceramides along with certain amino acids could emerge as predictive biomarkers of response and severity of inflammation.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , Biomarcadores , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Humanos , Imunidade , Metabolômica , Pandemias , Plasma , SARS-CoV-2 , Vacinação
12.
Phytochem Anal ; 33(1): 83-93, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34096121

RESUMO

INTRODUCTION: Nuclear magnetic resonance (NMR)-based metabolic profiling has been widely used in food and plant sciences. Despite its simplicity and inherent reproducibility, the determination of the appropriate pre-processing procedures greatly affects the obtained metabolic profile. OBJECTIVES: The current study represents a detailed guide of use for untargeted NMR-based metabolic profiling of table olives (Olea europaea L.). METHODS: Greek Kalamon table olives from different geographical origins were selected as reference materials. Differently treated samples were extracted using different solvents and/or solvent systems. Chemical profiles were evaluated with high-performance thin layer chromatography (HPTLC). Different deuterated solvents and sample concentrations were evaluated for the recording of optimal quality spectra. RESULTS: The methanol extract of freeze-dried table olives was found to contain the most representative secondary metabolites, in higher concentrations, as well. The optimal deuterated solvent for the NMR analysis was methanol-d4 , while final sample concentration should be within the range of 10 to 15 mg/mL. Multivariate data analysis was also used to estimate and confirm the variation and clustering caused by different characteristics of the samples. CONCLUSIONS: Results of the present study make evident the necessity for thorough planning and method development prior to any extensive metabolomic study based on NMR spectroscopy. Pre-processing and sample preparation stages seemed to greatly affect the metabolic profile and spectral quality in the case of table olives, which by extrapolation could apply to other food commodities. Nevertheless, the nature of the samples must be fully described in general, in order to proceed to solid conclusions.


Assuntos
Olea , Espectroscopia de Ressonância Magnética , Metabolômica , Reprodutibilidade dos Testes
13.
J Mol Biol ; 433(24): 167329, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34710398

RESUMO

The relation of sequence with specificity in membrane transporters is challenging to explore. Most relevant studies until now rely on comparisons of present-day homologs. In this work, we study a set of closely related transporters by employing an evolutionary, ancestral-reconstruction approach and reveal unexpected new specificity determinants. We analyze a monophyletic group represented by the xanthine-specific XanQ of Escherichia coli in the Nucleobase-Ascorbate Transporter/Nucleobase-Cation Symporter-2 (NAT/NCS2) family. We reconstructed AncXanQ, the putative common ancestor of this clade, expressed it in E. coli K-12, and found that, in contrast to XanQ, it encodes a high-affinity permease for both xanthine and guanine, which also recognizes adenine, hypoxanthine, and a range of analogs. AncXanQ conserves all binding-site residues of XanQ and differs substantially in only five intramembrane residues outside the binding site. We subjected both homologs to rationally designed mutagenesis and present evidence that these five residues are linked with the specificity change. In particular, we reveal Ser377 of XanQ (Gly in AncXanQ) as a major determinant. Replacement of this Ser with Gly enlarges the specificity of XanQ towards an AncXanQ-phenotype. The ortholog from Neisseria meningitidis retaining Gly at this position is also a xanthine/guanine transporter with extended substrate profile like AncXanQ. Molecular Dynamics shows that the S377G replacement tilts transmembrane helix 12 resulting in rearrangement of Phe376 relative to Phe94 in the XanQ binding pocket. This effect may rationalize the enlarged specificity. On the other hand, the specificity effect of S377G can be masked by G27S or other mutations through epistatic interactions.


Assuntos
Proteínas de Bactérias/química , Escherichia coli/enzimologia , Guanina/metabolismo , Neisseria meningitidis/enzimologia , Proteínas de Transporte de Nucleobases/química , Xantina/metabolismo , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Simulação de Dinâmica Molecular , Mutagênese , Proteínas de Transporte de Nucleobases/classificação , Proteínas de Transporte de Nucleobases/genética , Filogenia , Estrutura Secundária de Proteína , Especificidade por Substrato/genética
14.
Stress ; 24(6): 952-964, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34553679

RESUMO

Psychological stress and stress-related disorders constitute a major health problem in modern societies. Although the brain circuits involved in emotional processing are intensively studied, little is known about the implication of cerebellum in stress responses whereas the molecular changes induced by stress exposure in cerebellum remain largely unexplored. Here, we investigated the effects of acute stress exposure on mouse cerebellum. We used a forced swim test (FST) paradigm as an acute stressor. We then analyzed the cerebellar metabolomic profiles of stressed (n = 11) versus control (n = 11) male CD1 mice by a Nuclear Magnetic Resonance (NMR)-based, untargeted metabolomics approach. Our results showed altered levels of 19 out of the 47 annotated metabolites, which are implicated in neurotransmission and N-acetylaspartic acid (NAA) turnover, as well as in energy and purine/pyrimidine metabolism. We also correlated individual metabolite levels with FST behavioral parameters, and reported associations between FST readouts and levels of 4 metabolites. This work indicates an altered metabolomic signature after acute stress in the cerebellum and highlights a previously unexplored involvement of cerebellum in stress responses.


Assuntos
Metabolômica , Estresse Psicológico , Animais , Cerebelo/metabolismo , Modelos Animais de Doenças , Masculino , Metabolômica/métodos , Camundongos , Estresse Psicológico/metabolismo , Natação
15.
Metabolites ; 11(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202851

RESUMO

Biochemical methylation reactions mediate the transfer of the methyl group regulating vital biochemical reactions implicated in various diseases as well as the methylation of DNA regulating the replication processes occurring in living organisms. As a finite number of methyl carriers are involved in the methyl transfer, their quantification could aid towards the assessment of an organism's methylation potential. An Hydrophilic Interaction Chromatography-Liquid Chromatography Multiple Reaction Monitoring (HILIC-LC-MRM) mass spectrometry (MS) methodology was developed and validated according to Food & Drug Administration (FDA), European Medicines Agency (EMA), and International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) for the simultaneous determination of nine metabolites i.e., B12, folic acid, 5-methyltetrahydrofolate, S-adenosylmethionine, S-adenosylhomocysteine, betaine, phosphocholine, N,N-dimethylglycine, and deoxythymidine monophosphate in human blood plasma. The sample pretreatment was based on a single step Solid-phase extraction (SPE) methodology using C18 cartridges. The methodology was found to accurately quantitate the analytes under investigation according to the corresponding dynamic range proposed in the literature for each analyte. The applicability of the method was assessed using blood donor samples and its applicability demonstrated by the assessment of their basal levels, which were shown to agree with the established basal levels. The methodology can be used for diagnostic purposes as well as for epigenetic screening.

16.
J Med Chem ; 64(9): 6221-6240, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33856792

RESUMO

The enzyme 3-mercaptopyruvate sulfurtransferase (3-MST) is one of the more recently identified mammalian sources of H2S. A recent study identified several novel 3-MST inhibitors with micromolar potency. Among those, (2-[(4-hydroxy-6-methylpyrimidin-2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-one) or HMPSNE was found to be the most potent and selective. We now took the central core of this compound and modified the pyrimidone and the arylketone sides independently. A 63-compound library was synthesized; compounds were tested for H2S generation from recombinant 3-MST in vitro. Active compounds were subsequently tested to elucidate their potency and selectivity. Computer modeling studies have delineated some of the key structural features necessary for binding to the 3-MST's active site. Six novel 3-MST inhibitors were tested in cell-based assays: they exerted inhibitory effects in murine MC38 and CT26 colon cancer cell proliferation; the antiproliferative effect of the compound with the highest potency and best cell-based activity (1b) was also confirmed on the growth of MC38 tumors in mice.


Assuntos
Neoplasias do Colo/patologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Pirimidinonas/química , Pirimidinonas/farmacologia , Sulfurtransferases/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Camundongos , Sulfurtransferases/química , Sulfurtransferases/metabolismo
17.
J Therm Biol ; 96: 102860, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33627287

RESUMO

The human blood plasma proteome profile has been an area of intensive investigation and differential scanning calorimetry (DSC) has come forward as a novel tool in analyzing plasma heat capacity changes to monitor various physiological responses in health and disease. This study used DSC to assess potential alterations in the plasma heat capacity profile of albumin and globulins during extremely demanding physical exercise. We monitored the changes in denaturation profiles of those plasma proteins for five consecutive days of an extraordinary exercise training schedule in 14 young male Special Forces volunteers, as well as after a 30-day recovery period. The major effect of the prolonged intense exercise was the continuous upward shift of the albumin peak by 2°-3 °C on the initial days of exercise, with a tendency to plateau circa the 5th day of exercise. In addition, some redistribution of the denaturational enthalpy was observed upon exercise, where the globulins peak increased relative to the albumin peak. Noteworthy, the alterations in the plasma proteome denaturational profiles were not persistent, as virtually full recovery of the initial status was observed after 30 days of recovery. Our findings indicate that 5 days of exhaustive physical exercise of highly trained individuals enhanced the thermal stability of plasma albumin shifting its denaturational transition to higher temperatures. We surmise that these effects may be a result of increased blood oxygenation during the prolonged intense exercise and, consequently, of albumin oxidation as part of the overall adaptation mechanisms of the body to extreme physical and/or oxidative stress.


Assuntos
Proteínas Sanguíneas/metabolismo , Exercício Físico , Temperatura Alta , Adaptação Fisiológica , Adulto , Varredura Diferencial de Calorimetria , Grécia , Humanos , Masculino , Militares , Desnaturação Proteica , Voluntários , Adulto Jovem
18.
Acta Physiol (Oxf) ; 232(1): e13628, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33590724

RESUMO

AIM: Recent evidence suggests that arterial hypertension could be alternatively explained as a physiological adaptation response to water shortage, termed aestivation, which relies on complex multi-organ metabolic adjustments to prevent dehydration. Here, we tested the hypothesis that chronic water loss across diseased skin leads to similar adaptive water conservation responses as observed in experimental renal failure or high salt diet. METHODS: We studied mice with keratinocyte-specific overexpression of IL-17A which develop severe psoriasis-like skin disease. We measured transepidermal water loss and solute and water excretion in the urine. We quantified glomerular filtration rate (GFR) by intravital microscopy, and energy and nitrogen pathways by metabolomics. We measured skin blood flow and transepidermal water loss (TEWL) in conjunction with renal resistive indices and arterial blood pressure. RESULTS: Psoriatic animals lost large amounts of water across their defective cutaneous epithelial barrier. Metabolic adaptive water conservation included mobilization of nitrogen and energy from muscle to increase organic osmolyte production, solute-driven maximal anti-diuresis at normal GFR, increased metanephrine and angiotensin 2 levels, and cutaneous vasoconstriction to limit TEWL. Heat exposure led to cutaneous vasodilation and blood pressure normalization without parallel changes in renal resistive index, albeit at the expense of further increased TEWL. CONCLUSION: Severe cutaneous water loss predisposes psoriatic mice to lethal dehydration. In response to this dehydration stress, the mice activate aestivation-like water conservation motifs to maintain their body hydration status. The circulatory water conservation response explains their arterial hypertension. The nitrogen-dependency of the metabolic water conservation response explains their catabolic muscle wasting.


Assuntos
Hipertensão , Perda Insensível de Água , Animais , Estivação , Camundongos , Músculos , Pele
19.
Heart ; 107(14): 1123-1129, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33608305

RESUMO

Metabolomics, the comprehensive measurement of low-molecular-weight molecules in biological fluids used for metabolic phenotyping, has emerged as a promising tool to better understand pathways underlying cardiovascular disease (CVD) and to improve cardiovascular risk stratification. Here, we present the main methodologies for metabolic phenotyping, the methodological steps to analyse these data in epidemiological settings and the associated challenges. We discuss evidence from epidemiological studies linking metabolites to coronary heart disease and stroke. These studies indicate the systemic nature of CVD and identify associated metabolic pathways such as gut microbial cometabolism, branched-chain amino acids, glycerophospholipid and cholesterol metabolism, as well as activation of inflammatory processes. Integration of metabolomic with genomic data can provide new evidence for involved biochemical pathways and potential for causality using Mendelian randomisation. The clinical utility of metabolic biomarkers for cardiovascular risk stratification in healthy individuals has not yet been established. As sample sizes with high-dimensional molecular data increase in epidemiological settings, integration of metabolomic data across studies and platforms with other molecular data will lead to new understanding of the metabolic processes underlying CVD and contribute to identification of potentially novel preventive and pharmacological targets. Metabolic phenotyping offers a powerful tool in the characterisation of the molecular signatures of CVD, paving the way to new mechanistic understanding and therapies, as well as improving risk prediction of CVD patients. However, there are still challenges to face in order to contribute to clinically important improvements in CVD.


Assuntos
Doenças Cardiovasculares , Endofenótipos , Metabolômica/métodos , Medição de Risco , Biomarcadores/análise , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/terapia , Descoberta de Drogas , Fatores de Risco de Doenças Cardíacas , Humanos , Medição de Risco/métodos , Medição de Risco/tendências
20.
Metabolites ; 11(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513809

RESUMO

The national infrastructure FoodOmicsGR_RI coordinates research efforts from eight Greek Universities and Research Centers in a network aiming to support research and development (R&D) in the agri-food sector. The goals of FoodOmicsGR_RI are the comprehensive in-depth characterization of foods using cutting-edge omics technologies and the support of dietary/nutrition studies. The network combines strong omics expertise with expert field/application scientists (food/nutrition sciences, plant protection/plant growth, animal husbandry, apiculture and 10 other fields). Human resources involve more than 60 staff scientists and more than 30 recruits. State-of-the-art technologies and instrumentation is available for the comprehensive mapping of the food composition and available genetic resources, the assessment of the distinct value of foods, and the effect of nutritional intervention on the metabolic profile of biological samples of consumers and animal models. The consortium has the know-how and expertise that covers the breadth of the Greek agri-food sector. Metabolomics teams have developed and implemented a variety of methods for profiling and quantitative analysis. The implementation plan includes the following research axes: development of a detailed database of Greek food constituents; exploitation of "omics" technologies to assess domestic agricultural biodiversity aiding authenticity-traceability control/certification of geographical/genetic origin; highlighting unique characteristics of Greek products with an emphasis on quality, sustainability and food safety; assessment of diet's effect on health and well-being; creating added value from agri-food waste. FoodOmicsGR_RI develops new tools to evaluate the nutritional value of Greek foods, study the role of traditional foods and Greek functional foods in the prevention of chronic diseases and support health claims of Greek traditional products. FoodOmicsGR_RI provides access to state-of-the-art facilities, unique, well-characterised sample sets, obtained from precision/experimental farming/breeding (milk, honey, meat, olive oil and so forth) along with more than 20 complementary scientific disciplines. FoodOmicsGR_RI is open for collaboration with national and international stakeholders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...