Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 155(4): 2392-2406, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568142

RESUMO

The Cold Pool is a subsurface layer with water temperatures below 2 °C that is formed in the eastern Bering Sea. This oceanographic feature of relatively cooler bottom temperature impacts zooplankton and forage fish dynamics, driving different energetic pathways dependent upon Bering Sea climatic regime. Odontocetes echolocate to find prey, so tracking foraging vocalizations acoustically provides information to understand the implications of climate change on Cold Pool variability influencing regional food web processes. Vocal foraging dynamics of ice-associated and seasonally migrant marine mammal species suggest that sperm whales spend more time searching for prey in warm years when the Cold Pool is reduced but are more successful at capturing prey during cold years when the Cold Pool is stronger. Beluga whale foraging vocal activity was relatively consistent across climate regimes but peaked during the warm regime. Killer whale foraging vocal activity peaked in both warm and cold regimes with indicators of different ecotypes exploiting changing prey conditions across climate regimes. Foraging activity of odontocete apex predators may serve as a sentinel indicator of future ecosystem change related to prey availability that is linked to a diminishing Cold Pool as water temperatures rise and seasonal sea ice decreases due to climate change.


Assuntos
Beluga , Orca , Animais , Ecossistema , Temperatura , Cachalote , Água
2.
J Acoust Soc Am ; 154(5): 3438-3453, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015030

RESUMO

The soundscape of a given habitat is a product of its physical environment, human activity, and presence of soniferous marine life, which can be used to understand ecosystem processes, habitat quality, and biodiversity. Shallow coral habitats are hotspots of biodiversity and marine life. Deep-sea coral environments, in comparison, are generally poorly understood. Four soundscapes along the U.S. Outer Continental Shelf (OCS) and one soundscape from the Great Barrier Reef were quantified to explore how differences in habitat, depth, and substrate manifest acoustically. Comparisons were made between (1) deep, cold-water and shallow, warm-water coral reefs and (2) deep-sea coral and sandy bottom habitats. Application of the soundscape code to recordings in each location seeded cluster analyses of soundscape metrics and an assessment of daily trends to quantitatively compare the soundscapes. The shallow, tropical reef soundscape differed from the deep-sea soundscapes in amplitude and impulsiveness. Differences in soundscape properties among the deep-sea soundscapes suggested cold-water coral sites produce different soundscapes than the deep sites without live hard bottom. This initial assessment of deep-sea soundscapes along the U.S. OCS provides baseline acoustic properties in a region likely to experience changes due to climate and human use.


Assuntos
Ecossistema , Meio Ambiente , Humanos , Acústica , Água
3.
JASA Express Lett ; 2(9): 090801, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36182346

RESUMO

Using a 2-year time series (2019-2020) of 1-min sound pressure level averages from seven sites, the extension of COVID-related quieting documented in coastal soundscapes to deep (approximately 200-900 m) waters off the southeastern United States was assessed. Sites ranged in distance to the continental shelf break and shipping lanes. Sound level decreases in 2020 were observed at sites closest to the shelf break and shipping lanes but were inconsistent with the timing of shipping changes related to a COVID-19 slowdown. These observations are consistent with increased numbers of vessel tracks in 2020 compared to 2019 at a majority of sites.


Assuntos
COVID-19 , COVID-19/epidemiologia , Humanos , Navios , Sudeste dos Estados Unidos/epidemiologia
4.
J Acoust Soc Am ; 152(1): 201, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35931534

RESUMO

A characteristic feature of the eastern Bering Sea (EBS) is a subsurface layer linked to seasonal sea ice (SSI) and defined by bottom temperatures less than 2 °C, which is termed the cold pool. Cold pool variability is directly tied to regional zooplankton and fish dynamics. Multifrequency (200 and 460 kHz) acoustic backscatter data were collected remotely using upward looking echosounders along the EBS shelf from 2008 and 2018 and used as a proxy of biological abundance. Acoustic data were coupled with bottom temperature and regional SSI data from the cold (2006-2013) and warm (2014-2018) regimes to assess the relationship between biological scattering communities and cold pool variation. Acoustic backscatter was 2 orders of magnitude greater during the cold regime than during the warm regime, with multifrequency analysis indicating a shift in the warm regime frequency-dependent scattering communities. Cold pool proxy SSI was a stronger predictor for biological scattering than bottom temperature in the cold regime, while warm regime bottom temperature and SSI were equal in predictive power and resulted in improved predictive model performance. Results suggest coupled cold pool and frequency-dependent scattering dynamics are a potential regime shift indicator and may be useful for management practices in surrounding Arctic ecosystems.


Assuntos
Ecossistema , Zooplâncton , Animais , Regiões Árticas , Peixes , Temperatura
5.
Science ; 371(6529)2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33542110

RESUMO

Oceans have become substantially noisier since the Industrial Revolution. Shipping, resource exploration, and infrastructure development have increased the anthrophony (sounds generated by human activities), whereas the biophony (sounds of biological origin) has been reduced by hunting, fishing, and habitat degradation. Climate change is affecting geophony (abiotic, natural sounds). Existing evidence shows that anthrophony affects marine animals at multiple levels, including their behavior, physiology, and, in extreme cases, survival. This should prompt management actions to deploy existing solutions to reduce noise levels in the ocean, thereby allowing marine animals to reestablish their use of ocean sound as a central ecological trait in a healthy ocean.


Assuntos
Organismos Aquáticos/fisiologia , Audição , Ruído , Animais , Oceanos e Mares
6.
JASA Express Lett ; 1(1): 011203, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36154092

RESUMO

This Letter proposes a frequency scaling for processing, storing, and sharing high-bandwidth, passive acoustic spectral data that optimizes data volume while maintaining reasonable data resolution. The format is a hybrid that uses 1 Hz resolution up to 455 Hz and millidecade frequency bands above 455 Hz. This hybrid is appropriate for many types of soundscape analysis, including detecting different types of soundscapes and regulatory applications like computing weighted sound exposure levels. Hybrid millidecade files are compressed compared to the 1 Hz equivalent such that one research center could feasibly store data from hundreds of projects for sharing among researchers globally.

7.
JASA Express Lett ; 1(8): 081201, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-36154245

RESUMO

In the original paper [JASA Express Lett. 1(1), 011203 (2021)], a method for processing, storing, and sharing high-bandwidth, passive acoustic spectral data that optimizes data volume while maintaining reasonable data resolution was proposed. The format was a hybrid that uses 1-Hz resolution up to 455 Hz and millidecade frequency bands above 455 Hz. The choice of 455 Hz was based on a method of computing the edge frequencies of millidecade bands that is not compatible with summing millidecades to decidecades. This has been corrected. The new transition frequency is the first frequency with a millidecade with greater than 1 Hz, 435 Hz.

8.
J Acoust Soc Am ; 148(4): EL320, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33138483

RESUMO

A previous analysis of 1977 passive acoustic recordings in the Indian Ocean focused on sound pressure levels (SPLs) and showed that SPLs were slightly depth dependent and highly influenced by shipping activities [Wagstaff and Aitkenhead, IEEE J. Ocean. Eng. 30(2), 295-302 (2005)]. Consequently, SPL alone does not provide a consistent comprehensive metric to compare among sites or with contemporary recordings in the same region. Therefore, a source separation analysis was devised and applied to identify the major sound source contributions at three Indian Ocean locations. Shipping noise was a major sound contributor in all sites, while the site with the most diverse number of sources was in the central Arabian Sea.

9.
J Acoust Soc Am ; 147(6): 3849, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32611139

RESUMO

The impact of multibeam echosounder (MBES) operations on marine mammals has been less studied compared to military sonars. To contribute to the growing body of MBES knowledge, echolocation clicks of foraging Cuvier's beaked whales were detected on the Southern California Antisubmarine Warfare Range (SOAR) hydrophones during two MBES surveys and assembled into foraging events called group vocal periods (GVPs). Four GVP characteristics were analyzed Before, During, and After 12 kHz MBES surveys at the SOAR in 2017 and 2019 to assess differences in foraging behavior with respect to the mapping activity. The number of GVP per hour increased During and After MBES surveys compared with Before. There were no other differences between non-MBES and MBES periods for the three other characteristics: the number of clicks per GVP, GVP duration, and click rate. These results indicate that there was not a consistent change in foraging behavior during the MBES surveys that would suggest a clear response. The animals did not leave the range nor stop foraging during MBES activity. These results are in stark contrast to those of analogous studies assessing the effect of Naval mid-frequency active sonar on beaked whale foraging, where beaked whales stopped echolocating and left the area.


Assuntos
Ecolocação , Baleias , Acústica , Animais , California , Som
10.
J Acoust Soc Am ; 146(4): 2373, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31672001

RESUMO

Passive acoustic monitoring, mitigation, animal density estimation, and comprehensive understanding of the impact of sound on marine animals all require accurate information on vocalization source level to be most effective. This study focused on examining the uncertainty related to passive sonar equation terms that ultimately contribute to the variability observed in estimated source levels of fin whale calls. Differences in hardware configuration, signal detection methods, sample size, location, and time were considered in interpreting the variability of estimated fin whale source levels. Data from Wake Island in the Pacific Ocean and off Portugal in the Atlantic Ocean provided the opportunity to generate large datasets of estimated source levels to better understand sources of uncertainty leading to the observed variability with and across years. Average seasonal source levels from the Wake Island dataset ranged from 175 to 188 dB re 1 µPa m, while the 2007-2008 seasonal average detected off Portugal was 189 dB re 1 µPa m. Owing to the large inherent variability within and across this and other studies that potentially masks true differences between populations, there is no evidence to conclude that the source level of 20-Hz fin whale calls are regionally or population specific.

11.
J Acoust Soc Am ; 143(5): 2980, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29857709

RESUMO

Passive acoustic monitoring of marine mammals is common, and it is now possible to estimate absolute animal density from acoustic recordings. The most appropriate density estimation method depends on how much detail about animals' locations can be derived from the recordings. Here, a method for estimating cetacean density using acoustic data is presented, where only horizontal bearings to calling animals are estimable. This method also requires knowledge of call signal-to-noise ratios, as well as auxiliary information about call source levels, sound propagation, and call production rates. Results are presented from simulations, and from a pilot study using recordings of fin whale (Balaenoptera physalus) calls from Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) hydrophones at Wake Island in the Pacific Ocean. Simulations replicating different animal distributions showed median biases in estimated call density of less than 2%. The estimated average call density during the pilot study period (December 2007-February 2008) was 0.02 calls hr-1 km2 (coefficient of variation, CV: 15%). Using a tentative call production rate, estimated average animal density was 0.54 animals/1000 km2 (CV: 52%). Calling animals showed a varied spatial distribution around the northern hydrophone array, with most detections occurring at bearings between 90 and 180 degrees.


Assuntos
Acústica , Baleia Comum/fisiologia , Localização de Som/fisiologia , Vocalização Animal/fisiologia , Animais , Oceano Pacífico , Projetos Piloto
12.
J Acoust Soc Am ; 144(6): 3618, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30599686

RESUMO

Sri Lankan pygmy blue whale song consists of three repeated units: (1) low frequency pulsive unit, (2) frequency modulated (FM) upsweep, and (3) long tonal downsweep. The Unit 2 FM unit has up to three visible upsweeps with energy concentrated at approximately 40, 50, and 60 Hz, while the Unit 3 (∼100 Hz) tonal downsweep is the most distinct unit lasting 20-30 s. Spectral characteristics of the Units 2 and 3 song elements, along with ocean sound levels, were analyzed in the Indian Ocean from 2002 to 2013. The peak frequency of the tonal Unit 3 calls decreased from approximately 106.5 to 100.7 Hz over a decade corresponding to a 5.4% decrease. Over the same time period, the frequency content of the Unit 2 upsweeps did not change as dramatically with only a 3.1% change. Ambient sound levels in the vocalization bands did not exhibit equivalent patterns in amplitude trends. Analysis showed no increase in the ambient sound or compensated peak amplitude levels of the tonal downsweeps, eliminating the presence of a Lombard effect. Here it is proposed that each song unit may convey different information and thus may be responding to different selective pressures.

13.
J Acoust Soc Am ; 144(6): 3181, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30599689

RESUMO

Detecting marine mammal vocalizations in underwater acoustic environments and classifying them to species level is typically an arduous manual analysis task for skilled bioacousticians. In recent years, machine learning and other automated algorithms have been explored for quickly detecting and classifying all sound sources in an ambient acoustic environment, but many of these still require a large training dataset compiled through time-intensive manual pre-processing. Here, an application of the signal decomposition technique Empirical Mode Decomposition (EMD) is presented, which does not require a priori knowledge and quickly detects all sound sources in a given recording. The EMD detection process extracts the possible signals in a dataset for minimal quality control post-processing before moving onto the second phase: the EMD classification process. The EMD classification process uniquely identifies and labels most sound sources in a given environment. Thirty-five recordings containing different marine mammal species and mooring hardware noises were tested with the new EMD detection and classification processes. Ultimately, these processes can be applied to acoustic index development and refinement.

14.
J Acoust Soc Am ; 139(1): 501-11, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26827043

RESUMO

Low frequency sound has increased in the Northeast Pacific Ocean over the past 60 yr [Ross (1993) Acoust. Bull. 18, 5-8; (2005) IEEE J. Ocean. Eng. 30, 257-261; Andrew, Howe, Mercer, and Dzieciuch (2002) J. Acoust. Soc. Am. 129, 642-651; McDonald, Hildebrand, and Wiggins (2006) J. Acoust. Soc. Am. 120, 711-717; Chapman and Price (2011) J. Acoust. Soc. Am. 129, EL161-EL165] and in the Indian Ocean over the past decade, [Miksis-Olds, Bradley, and Niu (2013) J. Acoust. Soc. Am. 134, 3464-3475]. More recently, Andrew, Howe, and Mercer's [(2011) J. Acoust. Soc. Am. 129, 642-651] observations in the Northeast Pacific show a level or slightly decreasing trend in low frequency noise. It remains unclear what the low frequency trends are in other regions of the world. In this work, data from the Comprehensive Nuclear-Test Ban Treaty Organization International Monitoring System was used to examine the rate and magnitude of change in low frequency sound (5-115 Hz) over the past decade in the South Atlantic and Equatorial Pacific Oceans. The dominant source observed in the South Atlantic was seismic air gun signals, while shipping and biologic sources contributed more to the acoustic environment at the Equatorial Pacific location. Sound levels over the past 5-6 yr in the Equatorial Pacific have decreased. Decreases were also observed in the ambient sound floor in the South Atlantic Ocean. Based on these observations, it does not appear that low frequency sound levels are increasing globally.

15.
Adv Exp Med Biol ; 875: 713-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26611023

RESUMO

This ongoing work provides information about sound level trends from three ocean regions to compare with those of the North Pacific to determine whether increasing sound levels are a global phenomenon. Here the term soundscape is used to describe a measured physical property that can be selectively decomposed by frequency and sound level is used to provide insight relating to conditions ranging from the quietest conditions (sound floor) to the most extreme acoustic events. Acoustic time series from the Indian, South Atlantic, and Equatorial Pacific Oceans were used to quantify the rate and direction of low-frequency change over the past decade.


Assuntos
Internacionalidade , Ruído , Oceanos e Mares
16.
PLoS One ; 10(6): e0131246, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26110822

RESUMO

Variability of hydrographic conditions and primary and secondary productivity between cold and warm climatic regimes in the Bering Sea has been the subject of much study in recent years, while interannual variability within a single regime and across multiple trophic levels has been less well-documented. Measurements from an instrumented mooring on the southeastern shelf of the Bering Sea were analyzed for the spring-to-summer transitions within the cold regime years of 2009-2012 to investigate the interannual variability of hydrographic conditions, primary producer biomass, and acoustically-derived secondary producer and consumer abundance and community structure. Hydrographic conditions in 2012 were significantly different than in 2009, 2010, and 2011, driven largely by increased ice extent and thickness, later ice retreat, and earlier stratification of the water column. Primary producer biomass was more tightly coupled to hydrographic conditions in 2012 than in 2009 or 2011, and shallow and mid-column phytoplankton blooms tended to occur independent of one another. There was a high degree of variability in the relationships between different classes of secondary producers and hydrographic conditions, evidence of significant intra-consumer interactions, and trade-offs between different consumer size classes in each year. Phytoplankton blooms stimulated different populations of secondary producers in each year, and summer consumer populations appeared to determine dominant populations in the subsequent spring. Overall, primary producers and secondary producers were more tightly coupled to each other and to hydrographic conditions in the coldest year compared to the warmer years. The highly variable nature of the interactions between the atmospherically-driven hydrographic environment, primary and secondary producers, and within food webs underscores the need to revisit how climatic regimes within the Bering Sea are defined and predicted to function given changing climate scenarios.


Assuntos
Biomassa , Temperatura Baixa , Ecossistema , Cadeia Alimentar , Fitoplâncton/fisiologia , Alaska , Regiões Árticas , Clima , Geografia , Gelo , Oceanografia , Oceano Pacífico , Dinâmica Populacional , Estações do Ano , Temperatura
17.
PLoS One ; 9(9): e106998, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25229453

RESUMO

Ice seals overwintering in the Bering Sea are challenged with foraging, finding mates, and maintaining breathing holes in a dark and ice covered environment. Due to the difficulty of studying these species in their natural environment, very little is known about how the seals navigate under ice. Here we identify specific environmental parameters, including components of the ambient background sound, that are predictive of ice seal presence in the Bering Sea. Multi-year mooring deployments provided synoptic time series of acoustic and oceanographic parameters from which environmental parameters predictive of species presence were identified through a series of mixed models. Ice cover and 10 kHz sound level were significant predictors of seal presence, with 40 kHz sound and prey presence (combined with ice cover) as potential predictors as well. Ice seal presence showed a strong positive correlation with ice cover and a negative association with 10 kHz environmental sound. On average, there was a 20-30 dB difference between sound levels during solid ice conditions compared to open water or melting conditions, providing a salient acoustic gradient between open water and solid ice conditions by which ice seals could orient. By constantly assessing the acoustic environment associated with the seasonal ice movement in the Bering Sea, it is possible that ice seals could utilize aspects of the soundscape to gauge their safe distance to open water or the ice edge by orienting in the direction of higher sound levels indicative of open water, especially in the frequency range above 1 kHz. In rapidly changing Arctic and sub-Arctic environments, the seasonal ice conditions and soundscapes are likely to change which may impact the ability of animals using ice presence and cues to successfully function during the winter breeding season.


Assuntos
Focas Verdadeiras , Animais , Regiões Árticas , Camada de Gelo
18.
J Acoust Soc Am ; 135(2): 705-11, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25234879

RESUMO

The measurement and analysis of underwater sound is a complicated process because of the variable durations of contributing sources and constantly changing water column dynamics. Because the ambient sound distribution does not always follow a Gaussian structure and may be nonstationary in time, analysis over an extended period is required to accurately characterize the data. Utilizing recordings from the Indian Ocean, the temporal variation in ambient sound including transient signals was examined using multiple processing window lengths and subsampling intervals. Results illustrate the degree of uncertainty in sound levels based on different units of analysis. The average difference between sound level estimates in the 10-30 Hz band due to subsampling was 2 dB and as high as 4 dB. The difference in the full band (5-110 Hz) was as high as 6 dB. Longer averaging windows (200 vs 60 s) resulted in larger variations over different subsampling intervals. This work demonstrates how sampling protocols within a single dataset can influence results and acknowledges that comparative studies at the same location but with different sampling protocols can be substantial if signal processing parameters are not statistically accounted for to confirm interpretation of results and observed trends.

19.
J Acoust Soc Am ; 134(5): 3464-75, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24180757

RESUMO

The increase of ocean noise documented in the North Pacific has sparked concern on whether the observed increases are a global or regional phenomenon. This work provides evidence of low frequency sound increases in the Indian Ocean. A decade (2002-2012) of recordings made off the island of Diego Garcia, UK in the Indian Ocean was parsed into time series according to frequency band and sound level. Quarterly sound level comparisons between the first and last years were also performed. The combination of time series and temporal comparison analyses over multiple measurement parameters produced results beyond those obtainable from a single parameter analysis. The ocean sound floor has increased over the past decade in the Indian Ocean. Increases were most prominent in recordings made south of Diego Garcia in the 85-105 Hz band. The highest sound level trends differed between the two sides of the island; the highest sound levels decreased in the north and increased in the south. Rate, direction, and magnitude of changes among the multiple parameters supported interpretation of source functions driving the trends. The observed sound floor increases are consistent with concurrent increases in shipping, wind speed, wave height, and blue whale abundance in the Indian Ocean.


Assuntos
Acústica , Monitoramento Ambiental/métodos , Ruído , Água , Animais , Balaenoptera/fisiologia , Sedimentos Geológicos , Oceano Índico , Modelos Lineares , Ruído dos Transportes , Densidade Demográfica , Navios , Processamento de Sinais Assistido por Computador , Espectrografia do Som , Fatores de Tempo , Vocalização Animal , Movimentos da Água , Vento
20.
Adv Exp Med Biol ; 730: 239-43, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22278490

RESUMO

This is the first study to examine the potential effects of emissions from an air gun array on hearing of tropical reef fish using AEP thresholds measured in the field. Over 7 days, 51 Chromis viridis,47 Lutjanus kasmira, 20 Myripristis murdjan, and 10 Sargocentron spiniferum were tested. AEP thresholds were determined before and after exposure to emissions from one or two passes of an airgun array. Temporary threshold shift resulting from sound exposure was not found in any species,even when cumulative sound exposure levels reached 190 dB re 1 µPa2-s.


Assuntos
Limiar Auditivo , Peixes , Audição , Som , Acústica/instrumentação , Animais , Recifes de Corais , Potenciais Evocados Auditivos , Oceano Índico , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...