Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(7)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37512610

RESUMO

Cyclic olefin copolymer (COC) is a novel type of thermoplastic polymer gaining the attention of the scientific community in electronic, optoelectronic, biomedicine and packaging applications. Despite the benefits in the use of COC such as undoubted optical transparency, chemical stability, a good water-vapor barrier and biocompatibility, its original hydrophobicity restricts its wider applicability and optimization of its performances. Presently, we report on the optical and morphological properties of the films of COC covered with Ti in selected areas. The layer of Ti on COC was deposited by pulsed lased deposition processing. The Ti/COC film was characterized by UV-Vis spectroscopy indicating that its transmittance in the visible region decreased by about 20% with respect to the pristine polymer. The quality of the deposited Ti was assessed with the morphology by scanning electron (SEM) and atomic force microscopies (AFM). The modification of the wettability was observed by the sessile drop method indicating a reduction of the native hydrophilicity.

2.
Polymers (Basel) ; 15(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36904307

RESUMO

In this study, novel flexible micro-scale humidity sensors were directly fabricated in graphene oxide (GO) and polyimide (PI) using ion beam writing without any further modifications, and then successfully tested in an atmospheric chamber. Two low fluences (3.75 × 1014 cm-2 and 5.625 × 1014 cm-2) of carbon ions with an energy of 5 MeV were used, and structural changes in the irradiated materials were expected. The shape and structure of prepared micro-sensors were studied using scanning electron microscopy (SEM). The structural and compositional changes in the irradiated area were characterized using micro-Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Rutherford back-scattering spectroscopy (RBS), energy-dispersive X-ray spectroscopy (EDS), and elastic recoil detection analysis (ERDA) spectroscopy. The sensing performance was tested at a relative humidity (RH) ranging from 5% to 60%, where the electrical conductivity of PI varied by three orders of magnitude, and the electrical capacitance of GO varied in the order of pico-farads. In addition, the PI sensor has proven long-term sensing stability in air. We demonstrated a novel method of ion micro-beam writing to prepare flexible micro-sensors that function over a wide range of humidity and have good sensitivity and great potential for widespread applications.

3.
Micromachines (Basel) ; 14(2)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36837984

RESUMO

Polymer membranes are conventionally prepared using high-energy particles from radioactive decay or by the bombardment of hundreds of MeVs energy ions. In both circumstances, tracks of damage are produced by particles/ions passing through the polymer, and successively, the damaged material is removed by chemical etching to create narrow pores. This process ensures nanosized pore diameter but with random placement, leading to non-uniform local pore density and low membrane porosity, which is necessary to reduce the risk of their overlapping. The present study is focused on the use of polyethylene terephthalate (PET) foils irradiated by 10.0 MeV carbon ions, easily achievable with ordinary ion accelerators. The ion irradiation conditions and the chemical etching conditions were monitored to obtain customized pore locations without pore overlapping in PET. The quality, shape, and size of the pores generated in the micromembranes can have a large impact on their applicability. In this view, the Scanning Transmission Ion Microscopy coupled with a computer code created in our laboratory was implemented to acquire new visual and quantitative insights on fabricated membranes.

4.
Nanomaterials (Basel) ; 12(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36432215

RESUMO

Routinely, in membrane technology, the decay from radioactive particles or the bombardment of ions with MeV energy per nucleon have been employed for the production of narrow and long pores in membranes. Presently, the ion lithography is proposed to make the fabrication cost more affordable. It is prospective for the use of medium capacity accelerators making more feasible the fabrication of customized membranes. Thin polyethylene terephthalate foils have been patterned using 12 MeV O5+ ions and then processed to obtain good aspect ratio ion track pores in membranes. Pores of micrometric diameter with the following profiles were fabricated in the membranes: truncated cone, double conical, ideal cone, and cylindrical. Monitoring of the shape and size of pores has been attempted with a combination of Scanning Transmission Ion Microscope and a newly designed simulation program. This study is focused on the use of low-energy ions, accomplished in all laboratories, for the fabrication of membranes where the pores are not randomly traced and exhibit higher surface density and negligible overlapping than in membranes commonly manufactured. The good reproducibility and the ordered pore locations can be potentially utilized in applications such as microfluidics and organ-on-chip microsystems, where cells growing over porous substrates are used in simulation of biological barriers and transport processes.

5.
Phys Chem Chem Phys ; 24(10): 6290-6301, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35230368

RESUMO

The structural differences in (100)-, (110)- and (111)-oriented cubic yttria-stabilised zirconia (YSZ) single crystals after implantation with 2 MeV Si+ ions at the fluences of 5 × 1015, 1 × 1016 and 5 × 1016 cm-2 were studied using Rutherford backscattering spectrometry in the channelling mode (RBS-C), X-ray diffraction (XRD) and Raman spectroscopy. The RBS-C results show that the damage accumulation in the 〈110〉 direction exhibits a lower level of disorder (<0.3) than the other orientations (<0.6) and it seems that the (110) crystallographic orientation is the most resistant to radiation damage. The experimental results from the RBS measurement were compared with the results from the XRD measurements. The XRD data were analysed using the standard two-beam dynamical X-ray diffraction theory and the pure isotropic strain was deduced from the fit for the fluence of 5 × 1015 cm-2. It was shown that the maximum value of the isotropic strain does not depend on the surface orientation. The increase in signal intensity at ∼689 cm-1 is probably related to an increase in implantation defects such as oxygen vacancies.

6.
Phys Chem Chem Phys ; 23(39): 22673-22684, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34604878

RESUMO

Self-assembled surface nanoscale structures on various ZnO facets are excellent templates for the deposition of semiconductor quantum dots and manipulation with surface optical transparency. In this work, we have modified the surface of c-, m- and a-plane ZnO single-crystals by high-energy W-ion irradiation with an energy of 27 MeV to observe the aspects of surface morphology on the optical properties. We kept ion fluences in the range from 5 × 109 cm-2 to 5 × 1011 cm-2 using the mode of single-ion implantation and the overlapping impact mode to see the effect of various regimes on surface modification. Rutherford backscattering spectroscopy in the channeling mode (RBS-C) and Raman spectroscopy have identified a slightly growing Zn-sublattice disorder in the irradiated samples with a more significant enhancement for the highest irradiation fluence. Simultaneously, the strong suppression of the main Raman modes and the propagation of the modes corresponding to polar Zn-O vibrations indicate disorder mainly in the O-sublattice in non-polar facets. The surface morphology, analysed by atomic force microscopy (AFM), shows significant changes after ion irradiation. The c- and a-plane ZnO exhibit the formation of small grains on the surface. The m-plane ZnO forms a sponge-like surface for lower fluences and grains for the highest fluence. The surface roughness itself increases with the irradiation fluence as shown by AFM measurement as well as spectroscopic ellipsometry (SE) analysis. The damage caused by high-energy irradiation leads to non-radiative processes and suppression of the near-band-edge peak as well as the deep-level emission peak in the photoluminescence spectra. Furthermore, the refraction index n and the extinction coefficient k of irradiated samples, determined by SE, have features corresponding to the particular exciton states blurred and are slightly lower in the optical bandgap region especially for the polar c-plane ZnO facet.

7.
Nanomaterials (Basel) ; 10(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33265978

RESUMO

Three different crystallographic orientations of the wurtzite ZnO structure (labeled as c-plane, a-plane and m-plane) were implanted with Au+ ions using various energies and fluences to form gold nanoparticles (GNPs). The ion implantation process was followed by annealing at 600 °C in an oxygen atmosphere to decrease the number of unwanted defects and improve luminescence properties. With regard to our previous publications, the paper provides a summary of theoretical and experimental results, i.e., both DFT and FLUX simulations, as well as experimental results from TEM, HRTEM, RBS, RBS/C, Raman spectroscopy and photoluminescence. From the results, it follows that in the ZnO structure, implanted gold atoms are located in random interstitial positions -experimentally, the amount of interstitial gold atoms increased with increasing ion implantation fluence. During ion implantation and subsequent annealing, the metal clusters and nanoparticles with sizes from 2 to 20 nm were formed. The crystal structure of the resulting gold was not cubic (confirmed by diffraction patterns), but it had a hexagonal close-packed (hcp) arrangement. The ion implantation of gold leads to the creation of Zn and O interstitial defects and extended defects with distinct character in various crystallographic cuts of ZnO, where significant O-sublattice disordering occurred in m-plane ZnO.

8.
Phys Chem Chem Phys ; 19(16): 10282-10291, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28379227

RESUMO

In this paper, the effect of light ion irradiation on graphene oxide foil structure and composition was studied. Due to the excellent properties of graphene based materials suitable for application in electronics, optoelectronics, micro-mechanics and space technologies, the interaction of energetic ions with graphene based structures is worth studying. From the fundamental point of view, it is also interesting to get information about graphene oxide structure modification and the possible functional properties after irradiation by energetic ions. The light ion irradiation of graphene oxide (GO) foil was performed using 2.5 MeV H+ and 5.1 MeV He2+ ions. The change in the elemental composition of the GO foils after ion irradiation was investigated using Rutherford Backscattering Spectrometry and Elastic Recoil Detection Analysis. The influence of ion irradiation was further studied by microscopy methods. The chemical composition and structural changes of the GO foil surface were characterized by spectroscopy techniques including XPS, FTIR and Raman spectroscopy. Although the results of ion beam analysis indicated no significant compositional changes in the bulk of GO foils connected to ion irradiation, XPS, ATR-FTIR and Raman spectroscopy revealed reduction and removal of oxygen functionalities on the surface of graphene oxide. This reduction leads to a surface resistivity decrease after ion irradiation dependent on the ion species, fluence and energy.

9.
Nanoscale ; 7(23): 10535-43, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-26015058

RESUMO

Graphane is one of the most intensively studied derivatives of graphene. Here we demonstrate the evaluation of exact degree of graphene hydrogenation using the Clemmensen reduction reaction and deuterium labeling. The Clemmensen reduction reaction is based on application of zinc in an acid environment. It effectively reduces various functional groups (like ketones) present in graphite oxide. However, the mechanism of reduction is still unknown and elusive. Here we bring a major insight into the mechanisms of the Clemmensen reduction via deuterium labeling and the topochemical approach applied on graphite oxide. The use of deuterated reactants and the exact measurement of deuterium concentration in reduced/hydrogenated graphene by nuclear methods can be used for accurate estimation of C-H bond abundance in graphene. Various topochemical configurations of experiments showed that the reduction of a ketonic group proceeds in contact with the zinc metal by a carbenoid mechanism. Our results showed that the application of nuclear methods of isotope analysis in combination with deuterium labeling represents a very effective tool for investigation of graphene based materials. Our results demonstrate that graphene based materials can also be effectively used for the investigation of organic reaction mechanisms, because the robust structure of graphene allows the use of various spectroscopic techniques which could not be applied on small organic molecules.

10.
ACS Nano ; 9(5): 5478-85, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25894311

RESUMO

For the past decade, researchers have been trying to understand the mechanism of the thermal reduction of graphite oxide. Because deuterium is widely used as a marker in various organic reactions, we wondered if deuterium-labeled graphite oxide could be the key to fully understand this mechanism. Graphite oxides were prepared by the Hofmann, Hummers, Staudenmaier, and Brodie methods, and a deuterium-labeled analogue was synthesized by the Hofmann method. All graphite oxides were analyzed not only using the traditional techniques but also by gas chromatography-mass spectrometry (GC-MS) during exfoliation in hydrogen and nitrogen atmospheres. GC-MS enabled us to compare differences between the chemical compositions of the organic exfoliation products formed during the thermal reduction of these graphite oxides. Nuclear analytical methods (Rutherford backscattering spectroscopy, elastic recoil detection analysis) were used to calculate the concentrations of light elements, including the ratio of hydrogen to deuterium. Combining all of these results we were able to determine graphite oxide's thermal reduction mechanism. Carbon dioxide, carbon monoxide, and water are formed from the thermal reduction of graphite oxide. This process is also accompanied by various radical reactions that lead to the formation of a large amount of carcinogenic volatile organic compounds, and this will have major safety implications for the mass production of graphene.

11.
Chempluschem ; 80(9): 1399-1407, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31973355

RESUMO

The reduction of graphite oxide is one of the most important reactions in the production of graphene in gram quantities. The mechanisms of these widely used reactions are poorly understood. The mechanism of the chemical reduction of two different graphite oxides prepared by the chlorate (Hofmann method) and permanganate methods (Hummers method) has been investigated. Three different reduction agents, lithium tetrahydridoaluminate, sodium tetrahydridoborate, and lithium tetrahydridoborate, as well as their deuterated counterparts, were used for the reduction of graphite oxide. Reduced graphite oxides were analyzed by scanning electron microscopy, energy-dispersive spectroscopy, elemental combustion analysis, Raman spectroscopy, high-resolution X-ray photoelectron spectroscopy, and simultaneous thermal analysis. The concentration of boron incorporated into graphene was measured by prompt gamma activation analysis. Rutherford back-scattering spectroscopy and elastic recoil detection analysis were used for the determination of the elemental composition, including deuterium concentration, as evidence of CH bond formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...