Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 147: 219-228, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29636186

RESUMO

Ports are subject to a variety of anthropogenic impacts, and there is mounting evidence of faecal contamination through several routes. Yet, little is known about pollution in ports by faecal indicator bacteria (FIB). FIB spatio-temporal dynamics were assessed in 12 ports of the Adriatic Sea, a semi-enclosed basin under strong anthropogenic pressure, and their relationships with environmental variables were explored to gain insight into pollution sources. FIB were abundant in ports, often more so than in adjacent areas; their abundance patterns were related to salinity, oxygen, and nutrient levels. In addition, a molecular method, quantitative (q)PCR, was used to quantify FIB. qPCR enabled faster FIB determination and water quality monitoring that culture-based methods. These data provide robust baseline evidence of faecal contamination in ports and can be used to improve the management of routine port activities (dredging and ballast water exchange), having potential to spread pathogens in the sea.


Assuntos
Fezes/microbiologia , Microbiologia da Água , Bactérias/genética , Bactérias/isolamento & purificação , Monitoramento Ambiental/métodos , Mar Mediterrâneo , Reação em Cadeia da Polimerase em Tempo Real , Salinidade , Estações do Ano , Navios , Análise Espaço-Temporal , Inquéritos e Questionários , Qualidade da Água
2.
Mar Pollut Bull ; 147: 59-85, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30528114

RESUMO

Vessels, specifically ballast water and hull fouling, are a major vector for the introduction of non-indigenous species (NIS) in European seas. The Mediterranean is one of the world's marine regions where their invasion is heaviest. The shallow Adriatic basin is a highly sensitive area that is already experiencing its consequences. The secondary spread of NIS over a wider area through natural dispersion is a complex process that depends on a wide range of oceanographic factors. This work analysed the dataset of the BALMAS project, in whose framework twelve ports in the Adriatic Sea were subjected to a Port Baseline Survey (PBS), to estimate the natural spread of NIS organisms from their port of arrival to the wider Adriatic basin. Its findings indicate that the prevailing water circulation patterns facilitate the natural dispersal of harmful aquatic organisms and pathogens (HAOP).


Assuntos
Organismos Aquáticos , Espécies Introduzidas , Navios , Animais , Monitoramento Biológico/métodos , Mar Mediterrâneo , Oceanografia , Plâncton , Salinidade , Estações do Ano , Água do Mar/química , Inquéritos e Questionários , Microbiologia da Água , Vento
3.
Mar Pollut Bull ; 147: 47-58, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30318309

RESUMO

Port baseline surveys (PBS) provide species inventories in and around ports, with a focus on non-indigenous species that may have been introduced by vessels, primarily via ballast water. PBS are an essential tool to support effective management strategies for non-indigenous as well as native harmful aquatic organisms and pathogens (HAOP). This paper describes the methodology of PBS that were conducted in 12 Adriatic ports. The PBS employed existing protocols that were adapted to meet the characteristics of the Adriatic sites. Their results are reported in several papers included in this special issue, each of which is devoted to a specific community. An overview of existing surveys protocols - which provide valuable support to decision-making and to design effective monitoring of non-indigenous species - is also supplied.


Assuntos
Monitoramento Biológico/métodos , Espécies Introduzidas , Navios , Animais , Organismos Aquáticos , Mar Mediterrâneo , Inquéritos e Questionários , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...