Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(8): e0160433, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27490663

RESUMO

Most eukaryotic cells contain varying amounts of cytosolic lipidic inclusions termed lipid bodies (LBs) or lipid droplets (LDs). In mammalian cells, such as macrophages, these lipid-rich organelles are formed in response to host-pathogen interaction during infectious diseases and are sites for biosynthesis of arachidonic acid (AA)-derived inflammatory mediators (eicosanoids). Less clear are the functions of LBs in pathogenic lower eukaryotes. In this study, we demonstrated that LBs, visualized by light microscopy with different probes and transmission electron microscopy (TEM), are produced in trypomastigote forms of the parasite Trypanosoma cruzi, the causal agent of Chagas' disease, after both host interaction and exogenous AA stimulation. Quantitative TEM revealed that LBs from amastigotes, the intracellular forms of the parasite, growing in vivo have increased size and electron-density compared to LBs from amastigotes living in vitro. AA-stimulated trypomastigotes released high amounts of prostaglandin E2 (PGE2) and showed PGE2 synthase expression. Raman spectroscopy demonstrated increased unsaturated lipid content and AA incorporation in stimulated parasites. Moreover, both Raman and MALDI mass spectroscopy revealed increased AA content in LBs purified from AA-stimulated parasites compared to LBs from unstimulated group. By using a specific technique for eicosanoid detection, we immunolocalized PGE2 within LBs from AA-stimulated trypomastigotes. Altogether, our findings demonstrate that LBs from the parasite Trypanosoma cruzi are not just lipid storage inclusions but dynamic organelles, able to respond to host interaction and inflammatory events and involved in the AA metabolism. Acting as sources of PGE2, a potent immunomodulatory lipid mediator that inhibits many aspects of innate and adaptive immunity, newly-formed parasite LBs may be implicated with the pathogen survival in its host.


Assuntos
Ácido Araquidônico/metabolismo , Gotículas Lipídicas/metabolismo , Trypanosoma cruzi/metabolismo , Doença de Chagas/metabolismo , Dinoprostona/metabolismo , Gotículas Lipídicas/ultraestrutura , Prostaglandina-E Sintases/biossíntese , Proteínas de Protozoários/biossíntese , Trypanosoma cruzi/ultraestrutura
2.
J Phys Chem B ; 119(7): 2928-32, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25584700

RESUMO

An important part of the protein folding process is the consolidation of the protein core through the formation of specific, directional contacts after the initial hydrophobic collapse. Here, we simultaneously monitor formation of core contacts and assembly of secondary structure through salt-induced folding by using resonance Raman spectroscopy. Unfolded barstar at pH 12 was refolded by gradual addition of sodium sulfate salt. Altered spectral characteristics of the Trp53 residue suggest that the core of the protein attains a CH-π interaction at a low concentration of the salt, with an increase in the packing density. Further increase in salt concentration produces a reduction in the solvent accessibility of the core. These data provide evidence that the core of the protein becomes rigid upon the addition of 0.6 M sodium sulfate. This is the first time that the formation of a CH-π interaction has been directly monitored during the folding of a protein.


Assuntos
Proteínas de Bactérias/química , Dobramento de Proteína , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Estrutura Secundária de Proteína , Sais/química , Análise Espectral Raman , Sulfatos/química
3.
Biochemistry ; 53(41): 6550-65, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25284680

RESUMO

The aggregation of the microtubule-associated protein, tau, into amyloid fibrils is a hallmark of neurodegenerative diseases such as the tauopathies and Alzheimer's disease. Since monomeric tau is an intrinsically disordered protein and the polymeric fibrils possess an ordered cross-ß core, the aggregation process is known to involve substantial conformational conversion besides growth. The aggregation mechanism of tau in the presence of inducers such as heparin, deciphered using probes such as thioflavin T/S fluorescence, light scattering, and electron microscopy assays, has been shown to conform to ligand-induced nucleation-dependent polymerization. These probes do not, however, distinguish between the processes of conformational conversion and fibril growth. In this study, UV resonance Raman spectroscopy is employed to look directly at signatures of changes in secondary structure and side-chain packing during fibril formation by the four repeat functional domain of tau in the presence of the inducer heparin, at pH 7 and at 37 °C. Changes in the positions and intensities of the amide Raman bands are shown to occur in two distinct stages during the fibril formation process. The first stage of UVRR spectral changes corresponds to the transformation of monomer into early fibrillar aggregates. The second stage corresponds to the transformation of these early fibrillar aggregates into the final, ordered, mature fibrils and during this stage; the processes of conformational conversion and the consolidation of the fibril core occur simultaneously. Delineation of these secondary structural changes accompanying the formation of tau fibrils holds significance for the understanding of generic and tau-specific principles of amyloid assembly.


Assuntos
Amiloide/química , Proteínas Intrinsicamente Desordenadas/química , Modelos Moleculares , Proteínas tau/química , Amiloide/genética , Amiloide/metabolismo , Amiloide/ultraestrutura , Benzotiazóis , Corantes Fluorescentes , Heparina/química , Heparina/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/ultraestrutura , Cinética , Microscopia de Força Atômica , Agregação Patológica de Proteínas , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sequências Repetitivas de Aminoácidos , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Análise Espectral Raman , Tiazóis/química , Proteínas tau/genética , Proteínas tau/metabolismo , Proteínas tau/ultraestrutura
4.
Biophys J ; 105(1): 211-21, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23823241

RESUMO

Tryptophan is widely used as an intrinsic fluorophore for studies of protein structure and dynamics. Its fluorescence is known to have two decay components with lifetimes of 0.5 and 3.1 ns. In this work we measure the ultrafast dynamics of Tryptophan at <100 fs through measurements and modeling of the Raman excitation profiles with time-dependent wave packet propagation theory. We use a Brownian oscillator model to simulate the water-tryptophan interaction. Upon photoexcitation to the higher singlet electronic state (Bb) the structure of tryptophan is distorted to an overall expansion of the pyrrole and benzene rings. The total reorganization energy for Trp in water is estimated to be 2169 cm(-1) with a 1230 cm(-1) contribution from the inertial response of water. The value of reorganization energy of water corresponding to the fast response is found to be higher than that obtained upon excitation to the La state by previous studies that used computational simulations. The long-time dynamics of Trp manifests as a conformational heterogeneity at shorter times and contributes to inhomogeneous broadening of the Raman profiles (315 cm(-1)).


Assuntos
Solventes/química , Análise Espectral Raman , Triptofano/química , Cinética , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...