Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE J Sel Top Appl Earth Obs Remote Sens ; 11(12): 4578-4590, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32577149

RESUMO

The accurate estimation of grid-scale fluxes of water, energy, and carbon requires consideration of sub-grid spatial variability in root-zone soil moisture (RZSM). The NASA Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) mission represents the first systematic attempt to repeatedly map high-resolution RZSM fields using airborne remote sensing across a range of biomes. Here we compare 3-arc-sec (~100-m) spatial resolution AirMOSS RZSM retrievals from P-band radar acquisitions over 9 separate North American study sites with analogous RZSM estimates generated by the Flux-Penn State Hydrology Model (Flux-PIHM). The two products demonstrate comparable levels of accuracy when evaluated against ground-based soil moisture products and a significant level of temporal cross-correlation. However, relative to the AirMOSS RZSM retrievals, Flux-PIHM RZSM estimates generally demonstrate much lower levels of spatial and temporal variability, and the spatial patterns captured by both products are poorly correlated. Nevertheless, based on a discussion of likely error sources affecting both products, it is argued that the spatial analysis of AirMOSS and Flux-PIHM RZSM fields provide meaningful upper and lower bounds on the potential range of RZSM spatial variability encountered across a range of natural biomes.

2.
J Environ Qual ; 37(4): 1345-53, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18574164

RESUMO

Depending on management, soil organic carbon (SOC) is a potential source or sink for atmospheric CO(2). We used the EPIC model to study impacts of soil and crop management on SOC in corn (Zea mays L.) and soybean (Glycine max L. Merr.) croplands of Iowa. The National Agricultural Statistics Service crops classification maps were used to identify corn-soybean areas. Soil properties were obtained from a combination of SSURGO and STATSGO databases. Daily weather variables were obtained from first order meteorological stations in Iowa and neighboring states. Data on crop management, fertilizer application and tillage were obtained from publicly available databases maintained by the NRCS, USDA-Economic Research Service (ERS), and Conservation Technology Information Center. The EPIC model accurately simulated state averages of crop yields during 1970-2005 (R(2) = 0.87). Simulated SOC explained 75% of the variation in measured SOC. With current trends in conservation tillage adoption, total stock of SOC (0-20 cm) is predicted to reach 506 Tg by 2019, representing an increase of 28 Tg with respect to 1980. In contrast, when the whole soil profile was considered, EPIC estimated a decrease of SOC stocks with time, from 1835 Tg in 1980 to 1771 Tg in 2019. Hence, soil depth considered for calculations is an important factor that needs further investigation. Soil organic C sequestration rates (0-20 cm) were estimated at 0.50 to 0.63 Mg ha(-1) yr(-1) depending on climate and soil conditions. Overall, combining land use maps with EPIC proved valid for predicting impacts of management practices on SOC. However, more data on spatial and temporal variation in SOC are needed to improve model calibration and validation.


Assuntos
Produtos Agrícolas , Modelos Teóricos , Solo/análise , Calibragem , Iowa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...