Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Environ Pollut ; 342: 123095, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070644

RESUMO

The Lagoon of Venice is often dredged for channel maintenance. To avoid harmful consequences to the ecosystem, a proper disposal of bottom sediments requires a preliminary evaluation of its potential toxicity before excavation. Here we evaluated the effects of polluted sediments on clams (Ruditapes philippinarum) using a multibiomarker approach. Bivalves were exposed for 3 and 14 days to five sediment samples collected along a navigation canal between Venice historical centre and the industrial area of Porto Marghera. Immunological, antioxidant, detoxification, and neurotoxicity biomarkers were analysed in haemolymph, gill, and digestive gland. As a control, sediment collected far from pollution sources was used. Two experiments were performed to assess potential seasonal/gametogenic influence in clam sensitivity. A different response of clam biomarkers was observed during the two experiments and among sampling sites. Clams' digestive gland resulted to be the most sensitive tissue analysed showing significant differences among sites in all biomarkers analysed. Greater differences were present due to seasonality rather than exposure. The concentrations of metals and organic pollutants increased from the city centre to the industrial area, highlighting the influence that industrial activities had on the lagoon ecosystem. However, bioaccumulation in clams did not follow the same clear pattern, suggesting low bioavailability of compounds due to relatively high organic matter content. Biomarkers modulation was mainly driven by metals, both present in sediments and bioaccumulated. In comparison, effects of organic pollutants on the biomarkers tested were negligible. Other sources of contamination not investigated (e.g. pesticides) were suggested by neurotoxicity biomarkers alteration.


Assuntos
Bivalves , Poluentes Ambientais , Poluentes Químicos da Água , Animais , Ecossistema , Poluentes Químicos da Água/análise , Metais/análise , Poluentes Ambientais/análise , Biomarcadores , Sedimentos Geológicos/química , Monitoramento Ambiental/métodos
2.
BMC Biol ; 21(1): 234, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880625

RESUMO

BACKGROUND: The reuse of dredged sediments in ports and lagoons is a big issue as it should not affect the quality and the equilibrium of ecosystems. In the lagoon of Venice, sediment management is of crucial importance as sediments are often utilized to built-up structures necessary to limit erosion. However, the impact of sediment reuse on organisms inhabiting this delicate area is poorly known. The Manila clam is a filter-feeding species of high economic and ecological value for the Venice lagoon experiencing a drastic decline in the last decades. In order to define the molecular mechanisms behind sediment toxicity, we exposed clams to sediments sampled from different sites within one of the Venice lagoon navigable canals close to the industrial area. Moreover, we investigated the impacts of dredged sediments on clam's microbial communities. RESULTS: Concentrations of the trace elements and organic chemicals showed increasing concentrations from the city of Venice to sites close to the industrial area of Porto Marghera, where PCDD/Fs and PCBs concentrations were up to 120 times higher than the southern lagoon. While bioaccumulation of organic contaminants of industrial origin reflected sediments' chemical concentrations, metal bioaccumulation was not consistent with metal concentrations measured in sediments probably due to the activation of ABC transporters. At the transcriptional level, we found a persistent activation of the mTORC1 signalling pathway, which is central in the coordination of cellular responses to chemical stress. Microbiota characterization showed the over-representation of potential opportunistic pathogens following exposure to the most contaminated sediments, leading to host immune response activation. Despite the limited acquisition of new microbial species from sediments, the latter play an important role in shaping Manila clam microbial communities. CONCLUSIONS: Sediment management in the Venice lagoon will increase in the next years to maintain and create new canals as well as to allow the operation of the new mobile gates at the three Venice lagoon inlets. Our data reveal important transcriptional and microbial changes of Manila clams after exposure to sediments, therefore reuse of dredged sediments represents a potential risk for the conservation of this species and possibly for other organisms inhabiting the Venice lagoon.


Assuntos
Bivalves , Microbiota , Dibenzodioxinas Policloradas , Poluentes Químicos da Água , Animais , Sedimentos Geológicos/química , Transcriptoma , Dibenzofuranos/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Dibenzodioxinas Policloradas/análise , Dibenzodioxinas Policloradas/metabolismo , Dibenzodioxinas Policloradas/toxicidade , Bivalves/genética , Bivalves/química , Bivalves/metabolismo
3.
Mar Pollut Bull ; 193: 115192, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37364338

RESUMO

Extreme events like Marine Heatwaves (MHWs) are becoming more intense, severe, and frequent, threatening benthic communities, specifically bivalves. However, the consequences of non-lethal MHWs on animals are still poorly understood. Here, we exposed the Manila clam Ruditapes philippinarum to non-lethal MHW for 30 days and provided an integrative view of its effects. Our result indicated that albeit non-lethal, MHW reduced clam's energy reserves (by reducing their hepato-somatic index), triggered antioxidant defenses (particularly in males), impaired reproduction (via the production of smaller oocytes in females), triggered dysbiosis in the digestive gland microbiota and altered animals' behaviour (by impacting their burying capacity) and filtration rate. Such effects were seen also at RNA-seq (i.e. many down-regulated genes belonged to reproduction) and metabolome level. Interestingly, negative effects were more pronounced in males than in females. Our results show that MHWs influence animal physiology at multiple levels, likely impacting its fitness and its ecosystem services.


Assuntos
Bivalves , Ecossistema , Animais , Feminino , Masculino , Disbiose , Bivalves/fisiologia , Alimentos Marinhos , Reprodução
4.
Environ Res ; 227: 115745, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36972774

RESUMO

The sharp decrease in the cost of RNA-sequencing and the rapid improvement in computational analysis of eco-toxicogenomic data have brought new insights into the adverse effects of chemicals on aquatic organisms. Yet, transcriptomics is generally applied qualitatively in environmental risk assessments, hampering more effective exploitation of this evidence through multidisciplinary studies. In view of this limitation, a methodology is here presented to quantitatively elaborate transcriptional data in support to environmental risk assessment. The proposed methodology makes use of results from the application of Gene Set Enrichment Analysis to recent studies investigating the response of Mytilus galloprovincialis and Ruditapes philippinarum exposed to contaminants of emerging concern. The degree of changes in gene sets and the relevance of physiological reactions are integrated in the calculation of a hazard index. The outcome is then classified according to five hazard classes (from absent to severe), providing an evaluation of whole-transcriptome effects of chemical exposure. The application to experimental and simulated datasets proved that the method can effectively discriminate different levels of altered transcriptomic responses when compared to expert judgement (Spearman correlation coefficient of 0.96). A further application to data collected in two independent studies of Salmo trutta and Xenopus tropicalis exposed to contaminants confirmed the potential extension of the methodology to other aquatic species. This methodology can serve as a proof of concept for the integration of "genomic tools" in environmental risk assessment based on multidisciplinary investigations. To this end, the proposed transcriptomic hazard index can now be incorporated into quantitative Weight of Evidence approaches and weighed, with results from other types of analysis, to elucidate the role of chemicals in adverse ecological effects.


Assuntos
Mytilus , Transcriptoma , Animais , Perfilação da Expressão Gênica/métodos , Mytilus/genética , Medição de Risco/métodos
5.
Sci Total Environ ; 863: 160796, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36528093

RESUMO

In recent years recurrent bivalve mass mortalities considerably increased around the world, causing the collapse of natural and farmed populations. Venice Lagoon has historically represented one of the major production areas of the Manila clam Ruditapes philippinarum in Europe. However, in the last 20 years a 75 % decrease in the annual production has been experienced. While climate change and anthropogenic interventions may have played a key role in natural and farmed stocks reductions, no studies investigated at multiple levels the environmental stressors affecting farmed Manila clam to date. In this work we carried out a long-term monitoring campaign on Manila clam reared in four farming sites located at different distances from the southern Venice Lagoon inlet, integrating (meta)genomic approaches (i.e. RNA-seq; microbiota characterization), biometric measurements and chemical-physical parameters. Our study allowed to characterize the molecular mechanisms adopted by this species to cope with the different environmental conditions characterizing farming sites and to propose hypotheses to explain mortality events observed in recent years. Among the most important findings, the disruption of clam's immune response, the spread of Vibrio spp., and the up-regulation of molecular pathways involved in xenobiotic metabolism suggested major environmental stressors affecting clams farmed in sites placed close to Chioggia's inlet, where highest mortality was also observed. Overall, our study provides knowledge-based tools for managing Manila clam farming on-growing areas. In addition, the collected data is a snapshot of the time immediately before the commissioning of MoSE, a system of mobile barriers aimed at protecting Venice from high tides, and will represent a baseline for future studies on the effects of MoSE on clams farming and more in general on the ecology of the Venice Lagoon.


Assuntos
Bivalves , Animais , Bivalves/metabolismo , Alimentos Marinhos , Agricultura , Genômica
6.
Sci Total Environ ; 860: 160465, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36427727

RESUMO

Unravelling the adverse outcomes of pharmaceuticals mixture represents a research priority to characterize the risk for marine ecosystems. The present study investigated, for the first time, the interactions between two of the most largely detected pharmaceuticals in marine species: carbamazepine (CBZ) and valsartan (VAL), elucidating mechanisms that can modulate bioaccumulation, excretion and the onset of toxicity. Mytilus galloprovincialis were exposed to environmental levels of CBZ and VAL dosed alone or in combination: measurement of drug bioaccumulation was integrated with changes in the whole transcriptome and responsiveness of various biochemical and cellular biomarkers. Interactive and competing mechanisms between tested drugs were revealed by the much higher CBZ accumulation in mussels exposed to this compound alone, while an opposite trend was observed for VAL. A complex network of responses was observed as variations of gene expression, functional effects on neurotransmission, cell cycle, immune responses and redox homeostasis. The elaboration of results through a quantitative Weight of Evidence model summarized a greater biological reactivity of CBZ compared to VAL and antagonistic interactions between these compounds, resulting in a reduced effect of the antiepileptic when combined with valsartan. Overall, new perspectives are highlighted for a more comprehensive risk assessment of environmental mixtures of pharmaceuticals.


Assuntos
Mytilus , Preparações Farmacêuticas , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Carbamazepina/toxicidade , Carbamazepina/metabolismo , Ecossistema , Mytilus/efeitos dos fármacos , Preparações Farmacêuticas/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Valsartana/metabolismo , Valsartana/toxicidade
7.
Genome Biol Evol ; 14(12)2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36508337

RESUMO

The molecular factors and gene regulation involved in sex determination and gonad differentiation in bivalve molluscs are unknown. It has been suggested that doubly uniparental inheritance (DUI) of mitochondria may be involved in these processes in species such as the ubiquitous and commercially relevant Manila clam, Ruditapes philippinarum. We present the first long-read-based de novo genome assembly of a Manila clam, and a RNA-Seq multi-tissue analysis of 15 females and 15 males. The highly contiguous genome assembly was used as reference to investigate gene expression, alternative splicing, sequence evolution, tissue-specific co-expression networks, and sexual contrasting SNPs. Differential expression (DE) and differential splicing (DS) analyses revealed sex-specific transcriptional regulation in gonads, but not in somatic tissues. Co-expression networks revealed complex gene regulation in gonads, and genes in gonad-associated modules showed high tissue specificity. However, male gonad-associated modules showed contrasting patterns of sequence evolution and tissue specificity. One gene set was related to the structural organization of male gametes and presented slow sequence evolution but high pleiotropy, whereas another gene set was enriched in reproduction-related processes and characterized by fast sequence evolution and tissue specificity. Sexual contrasting SNPs were found in genes overrepresented in mitochondrial-related functions, providing new candidates for investigating the relationship between mitochondria and sex in DUI species. Together, these results increase our understanding of the role of DE, DS, and sequence evolution of sex-specific genes in an understudied taxon. We also provide resourceful genomic data for studies regarding sex diagnosis and breeding in bivalves.


Assuntos
Bivalves , DNA Mitocondrial , Animais , Feminino , Masculino , DNA Mitocondrial/genética , RNA-Seq , Bivalves/genética , Mitocôndrias/genética , Evolução Molecular
8.
BMC Infect Dis ; 22(1): 879, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418984

RESUMO

BACKGROUND: The efficacy of early treatment with convalescent plasma in patients with COVID-19 is debated. Nothing is known about the potential effect of other plasma components other than anti-SARS-CoV-2 antibodies. METHODS: To determine whether convalescent or standard plasma would improve outcomes for adults in early phase of Covid19 respiratory impairment we designed this randomized, three-arms, clinical trial (PLACO COVID) blinded on interventional arms that was conducted from June 2020 to August 2021. It was a multicentric trial at 19 Italian hospitals. We enrolled 180 hospitalized adult patients with COVID-19 pneumonia within 5 days from the onset of respiratory distress. Patients were randomly assigned in a 1:1:1 ratio to standard of care (n = 60) or standard of care + three units of standard plasma (n = 60) or standard of care + three units of high-titre convalescent plasma (n = 60) administered on days 1, 3, 5 after randomization. Primary outcome was 30-days mortality. Secondary outcomes were: incidence of mechanical ventilation or death at day 30, 6-month mortality, proportion of days with mechanical ventilation on total length of hospital stay, IgG anti-SARS-CoV-2 seroconversion, viral clearance from plasma and respiratory tract samples, and variations in Sequential Organ Failure Assessment score. The trial was analysed according to the intention-to-treat principle. RESULTS: 180 patients (133/180 [73.9%] males, mean age 66.6 years [IQR 57-73]) were enrolled a median of 8 days from onset of symptoms. At enrollment, 88.9% of patients showed moderate/severe respiratory failure. 30-days mortality was 20% in Control arm, 23% in Convalescent (risk ratio [RR] 1.13; 95% confidence interval [CI], 0.61-2.13, P = 0.694) and 25% in Standard plasma (RR 1.23; 95%CI, 0.63-2.37, P = 0.544). Time to viral clearance from respiratory tract was 21 days for Convalescent, 28 for Standard plasma and 23 in Control arm but differences were not statistically significant. No differences for other secondary endpoints were seen in the three arms. Serious adverse events were reported in 1.7%, 3.3% and 5% of patients in Control, Standard and Convalescent plasma arms respectively. CONCLUSIONS: Neither high-titer Convalescent nor Standard plasma improve outcomes of COVID-19 patients with acute respiratory failure. Trial Registration Clinicaltrials.gov Identifier: NCT04428021. First posted: 11/06/2020.


Assuntos
COVID-19 , Insuficiência Respiratória , Idoso , Feminino , Humanos , Masculino , COVID-19/terapia , Plasma , Padrão de Cuidado , Pessoa de Meia-Idade , Soroterapia para COVID-19
9.
ACS ES T Water ; 2(11): 1953-1963, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37552713

RESUMO

Wastewater-based epidemiology is now widely used as an indirect tool to monitor the spread of SARS-CoV-2. In this study, five different sample matrices representing diverse phases of the wastewater treatment process were collected during the second wave of SARS-CoV-2 from two wastewater treatment plants (WWTPs) serving the Civil Hospital and Sacca Fisola island in Venice, Italy. Positive SARS-CoV-2 detections occurred at both WWTPs, and data on viral genome detection rate and quantification suggest that the pellet (i.e., the particulate resulting from the influent) is a sensitive matrix that permits reliable assessment of infection prevalence while reducing time to results. On the contrary, analysis of post-treatment matrices provides evidence of the decontamination efficacy of both WWTPs. Finally, direct sequencing of wastewater samples enabled us to identify B.1.177 and B.1.160 as the prevalent SARS-CoV-2 lineages circulating in Venice at the time of sampling. This study confirmed the suitability of wastewater testing for studying SARS-CoV-2 circulation and established a simplified workflow for the prompt detection and characterization of the virus.

10.
Evol Appl ; 14(12): 2864-2880, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34950234

RESUMO

Chronic exposure to pollutants affects natural populations, creating specific molecular and biochemical signatures. In the present study, we tested the hypothesis that chronic exposure to pollutants might have substantial effects on the Manila clam hologenome long after removal from contaminated sites. To reach this goal, a highly integrative approach was implemented, combining transcriptome, genetic and microbiota analyses with the evaluation of biochemical and histological profiles of the edible Manila clam Ruditapes philippinarum, as it was transplanted for 6 months from the polluted area of Porto Marghera (PM) to the clean area of Chioggia (Venice lagoon, Italy). One month post-transplantation, PM clams showed several modifications to its resident microbiota, including an overrepresentation of the opportunistic pathogen Arcobacter spp. This may be related to the upregulation of several immune genes in the PM clams, potentially representing a host response to the increased abundance of deleterious bacteria. Six months after transplantation, PM clams demonstrated a lower ability to respond to environmental/physiological stressors related to the summer season, and the hepatopancreas-associated microbiota still showed different compositions among PM and CH clams. This study confirms that different stressors have predictable effects in clams at different biological levels and demonstrates that chronic exposure to pollutants leads to long-lasting effects on the animal hologenome. In addition, no genetic differentiation between samples from the two areas was detected, confirming that PM and CH clams belong to a single population. Overall, the obtained responses were largely reversible and potentially related to phenotypic plasticity rather than genetic adaptation. The results here presented will be functional for the assessment of the environmental risk imposed by chemicals on an economically important bivalve species.

11.
Environ Pollut ; 291: 118186, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34560576

RESUMO

Per-and poly-fluorinated alkyl substances (PFAS) are a group of chemicals used in a wide variety of commercial products and industrial applications. These chemicals are persistent, can accumulate in humans' and animals' tissues and in the environment, representing an increasing concern due to their moderate to highly toxicity. Their global distribution, persistence and toxicity led to an urgent need to investigate bioaccumulation also in marine species. In 2013 PFAS contamination was detected in a vast area in Veneto region, mainly in Adige and Brenta rivers. In order to investigate any relevant presence of these substances in marine vertebrates constantly living in the area, PFAS were measured in hepatic tissue samples of 20 bottlenose dolphins (Tursiops truncatus) stranded along the northern Adriatic Sea coastline between 2008 and 2020. Using high performance liquid chromatography-mass spectrometry, 17 target PFAS (PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA, PFTrDA, PFTeDA, PFBS, PFHxS, PFOS, PFDS, PFHpS, PFPeS), were quantified in the samples. PFAS profiles were generally composed of the same five dominant PFAS (PFOS > PFUnA > PFDA ≈ PFDoA ≈ PFTrDA). The greatest PFOS concentration found was 629,73 ng/g wet weight, and PFOS accounted until 71% in the PFAS profiles. No significant differences between sexes were found, while calves showing higher mean values than adults, possibly indicating an increasing ability in the elimination of PFAS with age. Finally, a temporal analysis was carried out considering three different periods of time, but no temporal differences in concentrations were found. The results suggest that long-chain PFAS are widespread in bottlenose dolphins along the North Adriatic Sea. Furthermore, they represent a baseline to investigate the impact of PFAS on marine mammals' conservation and health. Filling an important gap in the knowledge of PFAS accumulation in bottlenose dolphins, this study highlights the relevant role of Environmental and Tissue Banks for retrospective analyses on emergent contaminants.


Assuntos
Golfinho Nariz-de-Garrafa , Fluorocarbonos , Animais , Fluorocarbonos/análise , Fígado/química , Estudos Retrospectivos , Rios
12.
Toxics ; 9(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34437509

RESUMO

Alternative chemicals to per- and poly-fluoroalkyl substances have recently been introduced in various industrial processes. C6O4 (difluoro{[2,2,4,5-tetrafluoro-5-(trifluoromethoxy)-1,3-dioxolan-4-yl]oxy}acetic acid) is a new surfactant and emulsifier used as a replacement for perfluorooctanoic acid (PFOA). From an ecotoxicological point of view, in vitro assays are useful tools for assessing the negative effects and understanding the mechanisms of action of chemicals at the cellular level. Here, we present the results of an in vitro study in which the effects of C6O4 were evaluated-for the first time-on haemocytes of the clam Ruditapes philippinarum. Cells were exposed to three concentrations of C6O4 (0.05, 0.5, 5 µg/mL) and the effects on haemocyte viability, haemocyte morphology, differential haemocyte count, lysosomal membrane stability, superoxide anion production, acid phosphatase, and ß-glucuronidase activities, as well as on the percentage of micronuclei and chromosomal aberrations were evaluated. The results demonstrated that C6O4 significantly affected haemocyte morphology, lysosomal membrane stability, hydrolytic enzyme activity, and superoxide anion production, and promoted chromosomal aberrations. To the best of our knowledge, this is the first study revealing the in vitro effects of C6O4, a substitute for PFOA, on haemocytes from a bivalve species.

13.
Foods ; 10(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204939

RESUMO

Vibrios represent a natural contaminant of seafood products. V. alginolyticus, V. cholerae, V. parahaemolyticus and V. vulnificus are the most hazardous species to human health. Given the worldwide consumption of mollusc products, reliable detection of Vibrio species is recommended to prevent human vibriosis. In this study, culture-dependent and -independent methods were compared and integrated to implement knowledge of the Manila clam Vibrio community composition. Here, 16S and recA-pyrH metabarcoding were applied to compare the microbial communities of homogenate clam samples (culture-independent method) and their culture-derived samples plated on three different media (culture-dependent method). In addition, a subset of plated clam samples was investigated using shotgun metagenomics. Homogenate metabarcoding characterized the most abundant taxa (16S) and Vibrio species (recA-pyrH). Culture-dependent metabarcoding detected the cultivable taxa, including rare species. Moreover, marine agar medium was found to be a useful substrate for the recovery of several Vibrio species, including the main human pathogenic ones. The culture-dependent shotgun metagenomics detected all the main human pathogenic Vibrio species and a higher number of vibrios with respect to the recA-pyrH metabarcoding. The study revealed that integration of culture-dependent and culture-independent methods might be a valid approach for the characterization of Vibrio biodiversity.

14.
Environ Int ; 152: 106484, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33740673

RESUMO

There is growing concern for the wide use ofperfluorooctanoic acid (PFOA) because of its toxic effects on the environment and on human health. A new compound - the so called C6O4 (perfluoro ([5-methoxy-1,3-dioxolan-4-yl]oxy) acetic acid) - was recently introduced as one of the alternative to traditional PFOA, however this was done without any scientific evidence of the effects of C6O4 when dispersed into the environment. Recently, the Regional Agency for the Protection of the Environment of Veneto (Italy) detected high levels of C6O4 in groundwater and in the Po river, increasing the alarm for the potential effects of this chemical into the natural environment. The present study investigates for the first time the effects of C6O4 on the Manila clam Ruditapes philippinarum exposed to environmental realistic concentrations of C6O4 (0.1 µg/L and 1 µg/L) for 7 and 21 days. Furthermore, in order to better understand if C6O4 is a valid and less hazardous alternative to its substitute, microbial and transcriptomic alterations were also investigated in clams exposed to 1 µg/L ofPFOA. Results indicate that C6O4 may cause significant perturbations to the digestive gland microbiota, likely determining the impairment of host physiological homeostasis. Despite chemical analyses suggest a 5 times lower accumulation potential of C604 as compared to PFOA in clam soft tissues, transcriptional analyses reveal several alterations of gene expression profile. A large part of the altered pathways, including immune response, apoptosis regulation, nervous system development, lipid metabolism and cell membrane is the same in C6O4 and PFOA exposed clams. In addition, clams exposed to C6O4 showed dose-dependent responses as well as possible narcotic or neurotoxic effects and reduced activation of genes involved in xenobiotic metabolism. Overall, the present study suggests that the potential risks for marine organism following environmental contamination are not reduced by replacing PFOA with C6O4. In addition, the detection of both C6O4 and PFOA into tissues of clams inhabiting the Lagoon of Venice - where there are no point sources of either compounds - recommends a similar capacity to spread throughout the environment. These results prompt the urgent need to re-evaluate the use of C6O4 as it may represent not only an environmental hazard but also a potential risk for human health.


Assuntos
Bivalves , Fluorocarbonos , Microbiota , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Bivalves/genética , Humanos , Itália , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
15.
Environ Int ; 146: 106269, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248345

RESUMO

Contaminants of emerging concern and ocean changes are key environmental stressors for marine species with possibly synergistic, but still unexplored, deleterious effects. In the present study the influence of a simulated ocean acidification scenario (pH = 7.6) was investigated on metabolism and sub-lethal effects of carbamazepine, CBZ (1 µg/L), chosen as one of the most widely diffused pharmaceuticals in marine organisms. A multidisciplinary approach was applied on mussels, M. galloprovincialis, integrating measurement of drug bioaccumulation with changes in the whole transcriptome, responsiveness of various biochemical and cellular biomarkers including immunological parameters, lipid and oxidative metabolism, onset of genotoxic effects. Chemical analyses revealed a limited influence of hypercapnia on accumulation and excretion of CBZ, while a complex network of biological responses was observed in gene expression profile and functional changes at cellular level. The modulation of gamma-aminobutyric acid (GABA) pathway suggested similarities with the Mechanism of Action known for vertebrates: immune responses, cellular homeostasis and oxidative system represented the processes targeted by combined stressors. The overall elaboration of results through a quantitative Weight of Evidence model, revealed clearly increased cellular hazard due to interactions of CBZ with acidification compared to single stressors.


Assuntos
Mytilus , Preparações Farmacêuticas , Poluentes Químicos da Água , Animais , Biomarcadores/metabolismo , Carbamazepina/toxicidade , Mudança Climática , Homeostase , Concentração de Íons de Hidrogênio , Mytilus/metabolismo , Estresse Oxidativo , Água do Mar , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
16.
Environ Microbiol ; 22(10): 4456-4472, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32783350

RESUMO

As filter-feeders, bivalve molluscs accumulate Vibrio into edible tissues. Consequently, an accurate assessment of depuration procedures and the characterization of the persistent Vibrio community in depurated shellfish represent a key issue to guarantee food safety in shellfish products. The present study investigated changes in the natural Vibrio community composition of the Ruditapes philippinarum microbiota with specific focus on human pathogenic species. For this purpose, the study proposed a MLSA-NGS approach (rRNA 16S, recA and pyrH) for the detection and identification of Vibrio species. Clam microbiota were analysed before and after depuration procedures performed in four depuration plants, using culture-dependent and independent approaches. Microbiological counts and NGS data revealed differences in terms of both contamination load and Vibrio community between depuration plants. The novel MLSA-NGS approach allowed for a clear definition of the Vibrio species specific to each depuration plant. Specifically, depurated clam microbiota showed presence of human pathogenic species. Ozone treatments and the density of clams in the depuration tank probably influenced the level of contamination and the Vibrio community composition. The composition of Vibrio community specific to each plant should be carefully evaluated during the risk assessment to guarantee a food-safe shellfish-product for the consumer.


Assuntos
Bivalves/microbiologia , Desinfecção/métodos , Doenças Transmitidas por Alimentos/prevenção & controle , Frutos do Mar/microbiologia , Vibrio/crescimento & desenvolvimento , Animais , Contaminação de Alimentos/análise , Inocuidade dos Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Microbiota , Ozônio/farmacologia , Vibrio/classificação
17.
Mol Ecol ; 28(19): 4486-4499, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31482594

RESUMO

Mass mortalities due to disease outbreaks have recently affected a number of major taxa in marine ecosystems. Climate- and pollution-induced stress may compromise host immune defenses, increasing the risk of opportunistic diseases. Despite growing evidence that mass mortality events affecting marine species worldwide are strongly influenced by the interplay of numerous environmental factors, the reductionist approaches most frequently used to investigate these factors hindered the interpretation of these multifactorial pathologies. In this study, we propose a broader approach based on the combination of RNA-sequencing and 16S microbiota analyses to decipher the factors underlying mass mortality in the striped venus clam, Chamelea gallina, along the Adriatic coast. On one hand, gene expression profiling and functional analyses of microbial communities showed the over-expression of several genes and molecular pathways involved in xenobiotic metabolism, suggesting potential chemical contamination in mortality sites. On the other hand, the down-regulation of several genes involved in immune and stress response, and the over-representation of opportunistic pathogens such as Vibrio and Photobacterium spp. indicates that these microbial species may take advantage of compromised host immune pathways and defense mechanisms that are potentially affected by chemical exposure, resulting in periodic mortality events. We propose the application of our approach to interpret and anticipate the risks inherent in the combined effects of pollutants and microbes on marine animals in today's rapidly changing environment.


Assuntos
Bivalves/genética , Interações entre Hospedeiro e Microrganismos , Microbiota/fisiologia , Photobacterium/fisiologia , Transcriptoma , Vibrio/fisiologia , Poluentes da Água/efeitos adversos , Animais , Bivalves/microbiologia , Perfilação da Expressão Gênica , Mortalidade
18.
Nat Ecol Evol ; 3(8): 1241-1252, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31358948

RESUMO

Monitor lizards are unique among ectothermic reptiles in that they have high aerobic capacity and distinctive cardiovascular physiology resembling that of endothermic mammals. Here, we sequence the genome of the Komodo dragon Varanus komodoensis, the largest extant monitor lizard, and generate a high-resolution de novo chromosome-assigned genome assembly for V. komodoensis using a hybrid approach of long-range sequencing and single-molecule optical mapping. Comparing the genome of V. komodoensis with those of related species, we find evidence of positive selection in pathways related to energy metabolism, cardiovascular homoeostasis, and haemostasis. We also show species-specific expansions of a chemoreceptor gene family related to pheromone and kairomone sensing in V. komodoensis and other lizard lineages. Together, these evolutionary signatures of adaptation reveal the genetic underpinnings of the unique Komodo dragon sensory and cardiovascular systems, and suggest that selective pressure altered haemostasis genes to help Komodo dragons evade the anticoagulant effects of their own saliva. The Komodo dragon genome is an important resource for understanding the biology of monitor lizards and reptiles worldwide.


Assuntos
Sistema Cardiovascular , Lagartos , Aclimatação , Animais , Cromossomos
19.
Food Chem ; 286: 413-420, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30827626

RESUMO

Developing reliable tools to trace food origin represents a major goal for producers and control authorities. Here, we test the hypothesis whether NGS-generated data could provide a reliable tool to ensure seafood traceability. As a test case, we used the Manila clam Ruditapes philippinarum, a bivalve mollusk of high commercial interest with worldwide distribution, collected in the Venice lagoon sites subjected to prohibition of clam harvesting because of chemical contamination as well as in authorized clam harvesting areas. The results obtained demonstrated that the geographic origin of Manila clam may be more accurately determined basing on microbiome data than single nucleotide polymorphisms. In particular, combining microbiome data with machine-learning techniques, we provide the experimental evidence that it is possible to trace the clam place of origin at high spatial resolution. Considering its low cost and portability, NGS-analysis of microbiome data might represent a cost-effective, high-resolution tool for reliable food traceability.


Assuntos
Bivalves , Análise de Alimentos/métodos , Microbiota/genética , Polimorfismo de Nucleotídeo Único , Alimentos Marinhos/análise , Animais , Bivalves/genética , Bivalves/microbiologia , Impressões Digitais de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Itália , Aprendizado de Máquina , RNA Ribossômico 16S
20.
Heredity (Edinb) ; 123(2): 215-227, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30670841

RESUMO

Despite their long history with the basal split dating back to the Eocene, all species of monitor lizards (family Varanidae) studied so far share the same chromosome number of 2n = 40. However, there are differences in the morphology of the macrochromosome pairs 5-8. Further, sex determination, which revealed ZZ/ZW sex microchromosomes, was studied only in a few varanid species and only with techniques that did not test their homology. The aim of this study was to (i) test if cryptic interchromosomal rearrangements of larger chromosomal blocks occurred during the karyotype evolution of this group, (ii) contribute to the reconstruction of the varanid ancestral karyotype, and (iii) test homology of sex chromosomes among varanids. We investigated these issues by hybridizing flow sorted chromosome paints from Varanus komodoensis to metaphases of nine species of monitor lizards. The results show that differences in the morphology of the chromosome pairs 5-8 can be attributed to intrachromosomal rearrangements, which led to transitions between acrocentric and metacentric chromosomes in both directions. We also documented the first case of spontaneous triploidy among varanids in Varanus albigularis. The triploid individual was fully grown, which demonstrates that polyploidization is compatible with life in this lineage. We found that the W chromosome differs between species in size and heterochromatin content. The varanid Z chromosome is clearly conserved in all the analyzed species. Varanids, in addition to iguanas, caenophidian snakes, and lacertid lizards, are another squamate group with highly conserved sex chromosomes over a long evolutionary time.


Assuntos
Lagartos/genética , Cromossomos Sexuais/genética , Animais , Evolução Molecular , Heterocromatina/genética , Cariótipo , Cariotipagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...