Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1971, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438397

RESUMO

The glutaminase enzymes GAC and GLS2 catalyze the hydrolysis of glutamine to glutamate, satisfying the 'glutamine addiction' of cancer cells. They are the targets of anti-cancer drugs; however, their mechanisms of activation and catalytic activity have been unclear. Here we demonstrate that the ability of GAC and GLS2 to form filaments is directly coupled to their catalytic activity and present their cryo-EM structures which provide a view of the conformational states essential for catalysis. Filament formation guides an 'activation loop' to assume a specific conformation that works together with a 'lid' to close over the active site and position glutamine for nucleophilic attack by an essential serine. Our findings highlight how ankyrin repeats on GLS2 regulate enzymatic activity, while allosteric activators stabilize, and clinically relevant inhibitors block, filament formation that enables glutaminases to catalyze glutaminolysis and support cancer progression.


Assuntos
Glutaminase , Neoplasias , Glutamina , Citoesqueleto , Catálise , Ácido Glutâmico
2.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370687

RESUMO

Transglutaminase 2 (TG2) is a GTP-binding/protein-crosslinking enzyme that has been investigated as a therapeutic target for Celiac disease, neurological disorders, and aggressive cancers. TG2 has been suggested to adopt two conformational states that regulate its functions: a GTP-bound, closed conformation, and a calcium-bound, crosslinking-active open conformation. TG2 mutants that constitutively adopt an open conformation are cytotoxic to cancer cells. Thus, small molecules that maintain the open conformation of TG2 could offer a new therapeutic strategy. Here, we investigate TG2, using static and time-resolved small-angle X-ray scattering (SAXS) and single-particle cryoelectron microscopy (cryo-EM), to determine the conformational states responsible for conferring its biological effects. We also describe a newly developed TG2 inhibitor, LM11, that potently kills glioblastoma cells and use SAXS to investigate how LM11 affects the conformational states of TG2. Using SAXS and cryo-EM, we show that guanine nucleotide-bound TG2 adopts a monomeric closed conformation while calcium-bound TG2 assumes an open conformational state that can form higher order oligomers. SAXS analysis also suggests how a TG2 mutant that constitutively adopts the open state binds nucleotides through an alternative mechanism to wildtype TG2. Furthermore, we use time-resolved SAXS to show that LM11 increases the ability of calcium to drive TG2 to an open conformation, which is not reversible by guanine nucleotides and is cytotoxic to cancer cells. Taken together, our findings demonstrate that the conformational dynamics of TG2 are more complex than previously suggested and highlight how conformational stabilization of TG2 by LM11 maintains TG2 in a cytotoxic conformational state.

3.
IUCrJ ; 10(Pt 3): 363-375, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37144817

RESUMO

Advances in time-resolved structural techniques, mainly in macromolecular crystallography and small-angle X-ray scattering (SAXS), allow for a detailed view of the dynamics of biological macromolecules and reactions between binding partners. Of particular promise, are mix-and-inject techniques, which offer a wide range of experimental possibility as microfluidic mixers are used to rapidly combine two species just prior to data collection. Most mix-and-inject approaches rely on diffusive mixers, which have been effectively used within crystallography and SAXS for a variety of systems, but their success is dependent on a specific set of conditions to facilitate fast diffusion for mixing. The use of a new chaotic advection mixer designed for microfluidic applications helps to further broaden the types of systems compatible with time-resolved mixing experiments. The chaotic advection mixer can create ultra-thin, alternating layers of liquid, enabling faster diffusion so that even more slowly diffusing molecules, like proteins or nucleic acids, can achieve fast mixing on timescales relevant to biological reactions. This mixer was first used in UV-vis absorbance and SAXS experiments with systems of a variety of molecular weights, and thus diffusion speeds. Careful effort was also dedicated to making a loop-loading sample-delivery system that consumes as little sample as possible, enabling the study of precious, laboratory-purified samples. The combination of the versatile mixer with low sample consumption opens the door to many new applications for mix-and-inject studies.


Assuntos
Microfluídica , Proteínas , Difração de Raios X , Espalhamento a Baixo Ângulo , Raios X , Proteínas/química
4.
bioRxiv ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-36824706

RESUMO

The glutaminase enzymes GAC and GLS2 catalyze the hydrolysis of glutamine to glutamate, satisfying the 'glutamine addiction' of cancer cells. They are the targets of anti-cancer drugs; however, their mechanisms of activation and catalytic activity have been unclear. Here we demonstrate that the ability of GAC and GLS2 to form filaments is directly coupled to their catalytic activity and present their cryo-EM structures which provide an unprecedented view of the conformational states essential for catalysis. Filament formation guides an 'activation loop' to assume a specific conformation that works together with a 'lid' to close over the active site and position glutamine for nucleophilic attack by an essential serine. Our findings highlight how ankyrin repeats on GLS2 regulate enzymatic activity, while allosteric activators stabilize, and clinically relevant inhibitors block, filament formation that enables glutaminases to catalyze glutaminolysis and support cancer progression.

5.
Bio Protoc ; 12(18)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36248609

RESUMO

Cancer cells often overexpress glutaminase enzymes, in particular glutaminase C (GAC). GAC resides in the mitochondria and catalyzes the hydrolysis of glutamine to glutamate. High levels of GAC have been observed in aggressive cancers and the inhibition of its enzymatic activity has been shown to reduce their growth and survival. Numerous GAC inhibitors have been reported, the most heavily investigated being a class of compounds derived from the small molecule BPTES (bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide). X-ray structure determination under cryo-cooled conditions showed that the binding contacts for the different inhibitors were largely conserved despite their varying potencies. However, using the emerging technique serial room temperature crystallography, we were able to observe clear differences between the binding conformations of inhibitors. Here, we describe a step-by-step protocol for crystal handling, data collection, and data processing of GAC in complex with allosteric inhibitors using serial room temperature crystallography. Graphical abstract: Figure 1. Workflow for serial room temperature crystallography. Diagram showing the processing and scaling routine for crystals analyzed using serial room temperature crystallography.

6.
J Phys Chem B ; 126(35): 6599-6607, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36029222

RESUMO

Structure-based drug design (SBDD) is a prominent method in rational drug development and has traditionally benefitted from the atomic models of protein targets obtained using X-ray crystallography at cryogenic temperatures. In this perspective, we highlight recent advances in the development of structural techniques that are capable of probing dynamic information about protein targets. First, we discuss advances in the field of X-ray crystallography including serial room-temperature crystallography as a method for obtaining high-resolution conformational dynamics of protein-inhibitor complexes. Next, we look at cryogenic electron microscopy (cryoEM), another high-resolution technique that has recently been used to study proteins and protein complexes that are too difficult to crystallize. Finally, we present small-angle X-ray scattering (SAXS) as a potential high-throughput screening tool to identify inhibitors that target protein complexes and protein oligomerization.


Assuntos
Desenho de Fármacos , Proteínas , Cristalografia por Raios X , Proteínas/química , Espalhamento a Baixo Ângulo , Difração de Raios X
7.
J Biol Chem ; 298(2): 101535, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34954143

RESUMO

Cancer cells frequently exhibit uncoupling of the glycolytic pathway from the TCA cycle (i.e., the "Warburg effect") and as a result, often become dependent on their ability to increase glutamine catabolism. The mitochondrial enzyme Glutaminase C (GAC) helps to satisfy this 'glutamine addiction' of cancer cells by catalyzing the hydrolysis of glutamine to glutamate, which is then converted to the TCA-cycle intermediate α-ketoglutarate. This makes GAC an intriguing drug target and spurred the molecules derived from bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (the so-called BPTES class of allosteric GAC inhibitors), including CB-839, which is currently in clinical trials. However, none of the drugs targeting GAC are yet approved for cancer treatment and their mechanism of action is not well understood. Here, we shed new light on the underlying basis for the differential potencies exhibited by members of the BPTES/CB-839 family of compounds, which could not previously be explained with standard cryo-cooled X-ray crystal structures of GAC bound to CB-839 or its analogs. Using an emerging technique known as serial room temperature crystallography, we were able to observe clear differences between the binding conformations of inhibitors with significantly different potencies. We also developed a computational model to further elucidate the molecular basis of differential inhibitor potency. We then corroborated the results from our modeling efforts using recently established fluorescence assays that directly read out inhibitor binding to GAC. Together, these findings should aid in future design of more potent GAC inhibitors with better clinical outlook.


Assuntos
Inibidores Enzimáticos , Glutaminase , Neoplasias , Sulfetos , Tiadiazóis , Cristalografia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glutaminase/antagonistas & inibidores , Glutaminase/química , Glutaminase/metabolismo , Glutamina/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Sulfetos/química , Sulfetos/farmacologia , Temperatura , Tiadiazóis/química , Tiadiazóis/farmacologia
8.
Acta Crystallogr D Struct Biol ; 77(Pt 5): 628-644, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33950019

RESUMO

Serial synchrotron crystallography (SSX) is enabling the efficient use of small crystals for structure-function studies of biomolecules and for drug discovery. An integrated SSX system has been developed comprising ultralow background-scatter sample holders suitable for room and cryogenic temperature crystallographic data collection, a sample-loading station and a humid `gloveless' glovebox. The sample holders incorporate thin-film supports with a variety of designs optimized for different crystal-loading challenges. These holders facilitate the dispersion of crystals and the removal of excess liquid, can be cooled at extremely high rates, generate little background scatter, allow data collection over >90° of oscillation without obstruction or the risk of generating saturating Bragg peaks, are compatible with existing infrastructure for high-throughput cryocrystallography and are reusable. The sample-loading station allows sample preparation and loading onto the support film, the application of time-varying suction for optimal removal of excess liquid, crystal repositioning and cryoprotection, and the application of sealing films for room-temperature data collection, all in a controlled-humidity environment. The humid glovebox allows microscope observation of the sample-loading station and crystallization trays while maintaining near-saturating humidities that further minimize the risks of sample dehydration and damage, and maximize working times. This integrated system addresses common problems in obtaining properly dispersed, properly hydrated and isomorphous microcrystals for fixed-orientation and oscillation data collection. Its ease of use, flexibility and optimized performance make it attractive not just for SSX but also for single-crystal and few-crystal data collection. Fundamental concepts that are important in achieving desired crystal distributions on a sample holder via time-varying suction-induced liquid flows are also discussed.


Assuntos
Cristalografia por Raios X/instrumentação , Desenho de Equipamento , Proteínas/química , Manejo de Espécimes/métodos , Síncrotrons/instrumentação
9.
Cell Host Microbe ; 27(6): 937-949.e6, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32396840

RESUMO

Typhoidal and non-typhoidal Salmonelleae (NTS) cause typhoid fever and gastroenteritis, respectively, in humans. Salmonella typhoid toxin contributes to typhoid disease progression and chronic infection, but little is known about the role of its NTS ortholog. We found that typhoid toxin and its NTS ortholog induce different clinical presentations. The PltB subunit of each toxin exhibits different glycan-binding preferences that correlate with glycan expression profiles of host cells targeted by each bacterium at the primary infection or intoxication sites. Through co-crystal structures of PltB subunits bound to specific glycan receptor moieties, we show that they induce markedly different glycan-binding preferences and virulence outcomes. Furthermore, immunization with the NTS S. Javiana or its toxin offers cross-reactive protection against lethal-dose typhoid toxin challenge. Cumulatively, these results offer insights into the evolution of host adaptations in Salmonella AB toxins, their cell and tissue tropisms, and the design for improved typhoid vaccines and therapeutics.


Assuntos
Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Endotoxinas/toxicidade , Adaptação ao Hospedeiro/efeitos dos fármacos , Adaptação ao Hospedeiro/fisiologia , Salmonella typhi/metabolismo , Sequência de Aminoácidos , Animais , Antitoxinas/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/metabolismo , Reações Cruzadas/imunologia , Endotoxinas/genética , Endotoxinas/imunologia , Endotoxinas/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Knockout , Polissacarídeos/biossíntese , Salmonella , Salmonella typhi/imunologia , Salmonella typhi/patogenicidade , Febre Tifoide/microbiologia , Febre Tifoide/prevenção & controle , Vacinas Tíficas-Paratíficas/imunologia , Virulência
10.
J Biol Chem ; 293(46): 17941-17952, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30266806

RESUMO

Two regions on the α subunits of heterotrimeric GTP-binding proteins (G-proteins), the Switch II/α2 helix (which changes conformation upon GDP-GTP exchange) and the α3 helix, have been shown to contain the binding sites for their effector proteins. However, how the binding of Gα subunits to their effector proteins is translated into the stimulation of effector activity is still poorly understood. Here, we took advantage of a reconstituted rhodopsin-coupled phototransduction system to address this question and identified a distinct surface and an essential residue on the α subunit of the G-protein transducin (αT) that is necessary to fully activate its effector enzyme, the cGMP phosphodiesterase (PDE). We started with a chimeric G-protein α subunit (αT*) comprising residues mainly from αT and a short stretch of residues from the Gi1 α subunit (αi1), which only weakly stimulates PDE activity. We then reinstated the αT residues by systematically replacing the corresponding αi1 residues within αT* with the aim of fully restoring PDE stimulatory activity. These experiments revealed that the αG/α4 loop and a phenylalanine residue at position 283 are essential for conferring the αT* subunit with full PDE stimulatory capability. We further demonstrated that this same region and amino acid within the α subunit of the Gs protein (αs) are necessary for full adenylyl cyclase activation. These findings highlight the importance of the αG/α4 loop and of an essential phenylalanine residue within this region on Gα subunits αT and αs as being pivotal for their selective and optimal stimulation of effector activity.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Fenilalanina/química , Transducina/metabolismo , Adenilil Ciclases/metabolismo , Animais , Bovinos , Cromograninas/metabolismo , Ativação Enzimática , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Mutação com Ganho de Função , Células HEK293 , Humanos , Conformação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Rodopsina/metabolismo , Transducina/genética
11.
J Biol Chem ; 287(30): 24955-66, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22679017

RESUMO

Ran (Ras-related nuclear) protein, a member of the Ras superfamily of GTPases, is best known for its roles in nucleocytoplasmic transport, mitotic spindle fiber assembly, and nuclear envelope formation. Recently, we have shown that the overexpression of Ran in fibroblasts induces cellular transformation and tumor formation in mice (Ly, T. K., Wang, J., Pereira, R., Rojas, K. S., Peng, X., Feng, Q., Cerione, R. A., and Wilson, K. F. (2010) J. Biol. Chem. 285, 5815-5826). Here, we describe a novel activated Ran mutant, Ran(K152A), which is capable of an increased rate of GDP-GTP exchange and an accelerated GTP binding/GTP hydrolytic cycle compared with wild-type Ran. We show that its expression in NIH-3T3 fibroblasts induces anchorage-independent growth and stimulates cell invasion, as well as activates signaling pathways that lead to extracellular regulated kinase (ERK) activity. Furthermore, Ran(K152A) expression in the human mammary SKBR3 adenocarcinoma cell line gives rise to an enhanced transformed phenotype and causes a robust stimulation of both ERK and the N-terminal c-Jun kinase (JNK). Microarray analysis reveals that the expression of the gene encoding SMOC-2 (secreted modular calcium-binding protein-2), which has been shown to synergize with different growth factors, is increased by at least 50-fold in cells stably expressing Ran(K152A) compared with cells expressing control vector. Knocking down SMOC-2 expression greatly reduces the ability of Ran(K152A) to stimulate anchorage-independent growth in NIH-3T3 cells and in SKBR3 cells and also inhibits cell invasion in fibroblasts. Collectively, our findings highlight a novel connection between the hyper-activation of the small GTPase Ran and the matricellular protein SMOC-2 that has important consequences for oncogenic transformation.


Assuntos
Transformação Celular Neoplásica/metabolismo , Mutação de Sentido Incorreto , Proteína ran de Ligação ao GTP/metabolismo , Substituição de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Ativação Enzimática/genética , Humanos , Camundongos , Células NIH 3T3 , Proteína ran de Ligação ao GTP/genética
12.
Annu Rev Physiol ; 69: 451-82, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17037978

RESUMO

To ensure that extracellular stimuli are translated into intracellular signals of appropriate magnitude and specificity, most signaling cascades are tightly regulated. One of the major mechanisms involved in the regulation of G protein-coupled receptors (GPCRs) involves their endocytic trafficking. GPCR endocytic trafficking entails the targeting of receptors to discrete endocytic sites at the plasma membrane, followed by receptor internalization and intracellular sorting. This regulates the level of cell surface receptors, the sorting of receptors to degradative or recycling pathways, and in some cases the specific signaling pathways. In this chapter we discuss the mechanisms that regulate receptor endocytic trafficking, emphasizing the role of GPCR kinases (GRKs) and arrestins in this process.


Assuntos
Arrestinas/genética , Arrestinas/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Animais , Endocitose/fisiologia , Humanos , Modelos Moleculares , Transporte Proteico , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Vesículas Transportadoras/fisiologia
13.
J Biol Chem ; 281(14): 9812-23, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16439357

RESUMO

Interactions between arrestins and phosphoinositides have been reported to regulate multiple membrane-associated signaling and trafficking events including clathrin-mediated endocytosis and light adaptation in Drosophila. Arrestins have been proposed to have nuclear and cytosolic functions as well, although the ligand dependence of these functions has not been investigated. Here we characterize the structural, molecular, and cellular interactions between arrestin-2 and inositol hexakisphosphate (inositol 1,2,3,4,5,6-hexakisphosphate (IP(6))). The crystal structure of the arrestin-2.IP(6) complex was solved to 2.9 A with crystal lattice contacts suggesting two sites on a protein monomer mediating IP(6) binding. Mutagenesis coupled to isothermal titration calorimetry and tritiated IP(6) binding assays confirmed two-site binding with a low affinity IP(6)-binding site in the N-domain and a high affinity site in the C-domain. Native gel electrophoresis, gel filtration, and analytical ultracentrifugation demonstrated the ability of IP(6) to promote arrestin-2 oligomerization via the two crystallographically defined ligand-binding locations. In addition, analysis in mammalian cells revealed that arrestin-2 not only undergoes homo-oligomerization, but it can also hetero-oligomerize with arrestin-3 in a manner that depends on IP(6)-binding sites. Mutation of either IP(6)-binding site in arrestin-2 disrupted oligomerization while interactions with known binding partners including clathrin, AP-2, and ERK2 were maintained. Subcellular localization studies showed that arrestin-2 oligomers are primarily cytoplasmic, whereas arrestin-2 monomers displayed increased nuclear localization. Thus, by promoting cytosolic oligomerization, IP(6) binding is proposed to be a negative regulator of interactions of arrestin with plasma membrane and nuclear signaling proteins.


Assuntos
Arrestinas/química , Arrestinas/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Ácido Fítico/metabolismo , Transdução de Sinais , Animais , Sítios de Ligação/genética , Calorimetria , Membrana Celular , Citoplasma , Drosophila , Endocitose , Modelos Químicos , Mutagênese Sítio-Dirigida , Conformação Proteica
14.
Biochemistry ; 41(10): 3321-8, 2002 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-11876640

RESUMO

Arrestin binding to activated, phosphorylated G protein-coupled receptors (GPCRs) represents a critical step in regulation of light- and hormone-dependent signaling. Nonvisual arrestins, such as arrestin-2, interact with multiple proteins for the purpose of propagating and terminating signaling events. Using a combination of X-ray crystallography, molecular modeling, mutagenesis, and binding analysis, we reveal structural features of arrestin-2 that may enable simultaneous binding to phosphorylated receptor, SH3 domains, phosphoinositides, and beta-adaptin. The structure of full-length arrestin-2 thus provides a uniquely oriented scaffold for assembly of multiple, diverse molecules involved in GPCR signal transduction.


Assuntos
Arrestinas/fisiologia , Fosfoproteínas/fisiologia , Animais , Arrestinas/química , Arrestinas/genética , Arrestinas/metabolismo , Bovinos , Cristalografia por Raios X , Modelos Moleculares , Mutagênese , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...