Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37891938

RESUMO

Coumarin N-acylhydrazone derivatives were synthesized in the reaction of 3-acetylcoumarin and different benzohydrazides in the presence of molecular iodine as catalyst and at room temperature. All reactions were rapidly completed, and products were obtained in good to excellent yields. It is important to emphasize that four products were reported for the first time in this study. The obtained compounds were subjected to evaluation of their in vitro antioxidative activity using DPPH, ABTS, and FRAP methods. It was shown that products with a catechol moiety in their structure are the most potent antioxidant agents. The thermodynamic parameters and Gibbs free energies of reactions were used to determine the most probable mechanism of action. The results of in silico examination emphasize the need to take solvent polarity and free radical species into account when examining antiradical action. It was discovered by using computational approaches that HAT and SPLET are competitive molecular pathways for the radical scavenging activity of all compounds in polar mediums, while the HAT is the dominant mechanism in non-polar environments.

2.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35008914

RESUMO

Free radicals often interact with vital proteins, violating their structure and inhibiting their activity. In previous studies, synthesis, characterisation, and the antioxidative properties of the five different coumarin derivatives have been investigated. In the tests of potential toxicity, all compounds exhibited low toxicity with significant antioxidative potential at the same time. In this paper, the radical scavenging activity of the abovementioned coumarin derivatives towards ten different radical species was investigated. It was found that all investigated compounds show good radical scavenging ability, with results that are in correlation with the results published in the previous study. Three additional mechanisms of radical scavenging activity were investigated. It was found that all three mechanisms are thermodynamically plausible and in competition. Interestingly, it was found that products of the Double Hydrogen Atom Transfer (DHAT) mechanism, a biradical species in triplet spin state, are in some cases more stable than singlet spin state analogues. This unexpected trend can be explained by spin delocalisation over the hydrazide bridge and phenolic part of the molecule with a low probability of spin pairing. Besides radical-scavenging activity, the pharmacokinetic and drug-likeness of the coumarin hybrids were investigated. It was found that they exhibit good membrane and skin permeability and potential interactions with P-450 enzymes. Furthermore, it was found that investigated compounds satisfy all criteria of the drug-likeness tests, suggesting they possess a good preference for being used as potential drugs.


Assuntos
Cumarínicos/farmacologia , Cumarínicos/farmacocinética , Sequestradores de Radicais Livres/farmacologia , Hidrazinas/farmacologia , Hidrazinas/farmacocinética , Cumarínicos/química , Hidrazinas/química , Modelos Moleculares , Conformação Molecular , Termodinâmica
3.
RSC Adv ; 11(5): 2838-2847, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35424215

RESUMO

The recently declared global pandemic of a new human coronavirus called SARS-CoV-2, which causes respiratory tract disease COVID-19, has reached worldwide resonance and global efforts are being made to look for possible cures. Sophisticated molecular docking software, as well as available protein sequence and structure information, offer the ability to test the inhibition of two important targets of SARS-CoV-2, furin (FUR) enzyme, and spike glycoprotein, or spike protein (SP), that are key to host cell adhesion and hijacking. The potential inhibitory effect and mechanism of action of acid-base forms of different antiviral drugs, dominant at physiological pH, chloroquine (CQ), hydroxychloroquine (HCQ), and cinanserin (CIN), which have been shown to be effective in the treatment of SARS-CoV-2 virus, is reported with the special emphasis on their relative abundances. On the other hand, the potential inhibitory effect of the dominant acid-base forms of quercetin (Q) and its oxidative metabolite 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H) benzofuranone (BZF), which are constituents of traditional food products believed to exhibit antiviral effects, was also examined. The undertaken study includes the determination of the major energy contributions to the binding energy as well as in-depth analysis of amino acid residues at the active pocket and possible interactions. The approach that we propose here may be an additional strategy for combating the deadly virus by preventing the first step of the virus replication cycle. Preliminary research has shown that the investigated compounds exert an inhibitory effect against the SARS-CoV-2 furin enzyme and spiked glycoprotein through different acid-base forms. These investigations may be helpful in creating potential therapeutic agents in the fight against the SARS-CoV-2 virus. On the other hand, the results we predicted in this computational study may be the basis for new experimental in vitro and in vivo studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...