Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 33(4): 699-717, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35031570

RESUMO

BACKGROUND: The tight junction proteins claudin-2 and claudin-10a form paracellular cation and anion channels, respectively, and are expressed in the proximal tubule. However, the physiologic role of claudin-10a in the kidney has been unclear. METHODS: To investigate the physiologic role of claudin-10a, we generated claudin-10a-deficient mice, confirmed successful knockout by Southern blot, Western blot, and immunofluorescence staining, and analyzed urine and serum of knockout and wild-type animals. We also used electrophysiologic studies to investigate the functionality of isolated proximal tubules, and studied compensatory regulation by pharmacologic intervention, RNA sequencing analysis, Western blot, immunofluorescence staining, and respirometry. RESULTS: Mice deficient in claudin-10a were fertile and without overt phenotypes. On knockout, claudin-10a was replaced by claudin-2 in all proximal tubule segments. Electrophysiology showed conversion from paracellular anion preference to cation preference and a loss of paracellular Cl- over HCO3- preference. As a result, there was tubular retention of calcium and magnesium, higher urine pH, and mild hypermagnesemia. A comparison with other urine and serum parameters under control conditions and sequential pharmacologic transport inhibition, and unchanged fractional lithium excretion, suggested compensative measures in proximal and distal tubular segments. Changes in proximal tubular oxygen handling and differential expression of genes regulating fatty acid metabolism indicated proximal tubular adaptation. Western blot and immunofluorescence revealed alterations in distal tubular transport. CONCLUSIONS: Claudin-10a is the major paracellular anion channel in the proximal tubule and its deletion causes calcium and magnesium hyper-reabsorption by claudin-2 redistribution. Transcellular transport in proximal and distal segments and proximal tubular metabolic adaptation compensate for loss of paracellular anion permeability.


Assuntos
Claudina-2 , Claudinas/metabolismo , Animais , Cátions/metabolismo , Túbulos Renais Proximais/metabolismo , Camundongos , Permeabilidade , Junções Íntimas/fisiologia
2.
Int J Mol Sci ; 20(21)2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671507

RESUMO

Claudins are key components of the tight junction, sealing the paracellular cleft or composing size-, charge- and water-selective paracellular channels. Claudin-10 occurs in two major isoforms, claudin-10a and claudin-10b, which constitute paracellular anion or cation channels, respectively. For several years after the discovery of claudin-10, its functional relevance in men has remained elusive. Within the past two years, several studies appeared, describing patients with different pathogenic variants of the CLDN10 gene. Patients presented with dysfunction of kidney, exocrine glands and skin. This review summarizes and compares the recently published studies reporting on a novel autosomal-recessive disorder based on claudin-10 mutations.


Assuntos
Claudinas/genética , Claudinas/metabolismo , Nefropatias/genética , Mutação , Predisposição Genética para Doença , Humanos , Hipo-Hidrose/genética , Ictiose/genética , Nefropatias/metabolismo , Doenças do Aparelho Lacrimal/genética , Domínios Proteicos , Xerostomia/genética
3.
Am J Physiol Renal Physiol ; 315(1): F27-F35, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29561186

RESUMO

Mutations in hepatocyte nuclear factor 1ß (HNF1ß) cause autosomal dominant tubulointerstitial kidney disease (ADTKD-HNF1ß), and patients tend to develop renal cysts, maturity-onset diabetes of the young (MODY), and suffer from electrolyte disturbances, including hypomagnesemia, hypokalemia, and hypocalciuria. Previous HNF1ß research focused on the renal distal convoluted tubule (DCT) to elucidate the ADTKD-HNF1ß electrolyte phenotype, although 70% of Mg2+ is reabsorbed in the thick ascending limb of Henle's loop (TAL). An important regulator of Mg2+ reabsorption in the TAL is the calcium-sensing receptor (CaSR). This study used several methods to elucidate the role of HNF1ß in electrolyte reabsorption in the TAL. HNF1ß ChIP-seq data revealed a conserved HNF1ß binding site in the second intron of the CaSR gene. Luciferase-promoter assays displayed a 5.8-fold increase in CaSR expression when HNF1ß was present. Expression of the HNF1ß p.Lys156Glu mutant, which prevents DNA binding, abolished CaSR expression. Hnf1ß knockdown in an immortalized mouse kidney TAL cell line (MKTAL) reduced expression of the CaSR and Cldn14 (claudin 14) by 56% and 48%, respectively, while Cldn10b expression was upregulated 5.0-fold. These results were confirmed in a kidney-specific HNF1ß knockout mouse, which exhibited downregulation of the Casr by 81%. Cldn19 and Cldn10b expression levels were also decreased by 37% and 83%, respectively, whereas Cldn3 was upregulated by 4.6-fold. In conclusion, HNF1ß is a transcriptional activator of the CaSR. Consequently, patients with HNF1ß mutations may have reduced CaSR activity in the kidney, which could explain cyst progression and hyperabsorption of Ca2+ and Mg2+ in the TAL resulting in hypocalciuria.


Assuntos
Fator 1-beta Nuclear de Hepatócito/metabolismo , Alça do Néfron/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Sítios de Ligação , Cálcio/metabolismo , Claudinas/genética , Claudinas/metabolismo , Feminino , Células HEK293 , Fator 1-beta Nuclear de Hepatócito/deficiência , Fator 1-beta Nuclear de Hepatócito/genética , Humanos , Magnésio/metabolismo , Masculino , Camundongos Knockout , Regiões Promotoras Genéticas , Ligação Proteica , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Receptores Acoplados a Proteínas G/genética , Reabsorção Renal , Transcrição Gênica , Ativação Transcricional
4.
Am J Physiol Renal Physiol ; 314(2): F190-F195, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28971992

RESUMO

The nephron segments in the inner medulla are part of the urine concentrating mechanism. Depending on the diuretic state, they are facing a large range of extracellular osmolality. We investigated whether water homeostasis affects tubular transport and permeability properties in inner medullary descending thin limb (IMdTL) and ascending thin limb (IMaTL). Three experimental groups of rats under different diuretic states were investigated on metabolic cages: waterload, furosemide-induced diuresis, and control (antidiuresis). Urine production and osmolalities reflected the 3-day treatment. To functionally investigate tubular epithelial properties, we performed experiments in freshly isolated inner medullary thin limbs from these animals. Tubular segments were acutely dissected and investigated for trans- and paracellular properties by in vitro perfusion and electrophysiological analysis. IMdTL and IMaTL were distinguished by morphological criteria. We confirmed absence of transepithelial electrogenic transport in thin limbs. Although diffusion potential measurements showed no differences between treatments in IMdTLs, we observed increased paracellular cation selectivity under waterload in IMaTLs. NaCl diffusion potential was -5.64 ± 1.93 mV under waterload, -1.99 ± 1.72 mV under furosemide-induced diuresis, and 0.27 ± 0.40 mV under control. The corresponding permeability ratio PNa/Cl was 1.53 ± 0.21 (waterload), 1.22 ± 0.18 (furosemide-induced diuresis), and 0.99 ± 0.02 (control), respectively. Claudins are main constituents of the tight junction responsible for paracellular selectivity; however, immunofluorescence did not show qualitative differences in claudin 4, 10, and 16 localization. Our results show that IMaTLs change tight junction properties in response to diuretic state to allow adaptation of NaCl reabsorption.


Assuntos
Diurese/efeitos dos fármacos , Diuréticos/farmacologia , Ingestão de Líquidos , Células Epiteliais/efeitos dos fármacos , Furosemida/farmacologia , Alça do Néfron/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Água/metabolismo , Animais , Claudinas/metabolismo , Difusão , Células Epiteliais/metabolismo , Feminino , Alça do Néfron/metabolismo , Masculino , Concentração Osmolar , Permeabilidade , Ratos Sprague-Dawley , Reabsorção Renal/efeitos dos fármacos , Cloreto de Sódio/urina , Junções Íntimas/metabolismo
5.
PLoS Genet ; 13(7): e1006897, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28686597

RESUMO

Claudins constitute the major component of tight junctions and regulate paracellular permeability of epithelia. Claudin-10 occurs in two major isoforms that form paracellular channels with ion selectivity. We report on two families segregating an autosomal recessive disorder characterized by generalized anhidrosis, severe heat intolerance and mild kidney failure. All affected individuals carry a rare homozygous missense mutation c.144C>G, p.(N48K) specific for the claudin-10b isoform. Immunostaining of sweat glands from patients suggested that the disease is associated with reduced levels of claudin-10b in the plasma membranes and in canaliculi of the secretory portion. Expression of claudin-10b N48K in a 3D cell model of sweat secretion indicated perturbed paracellular Na+ transport. Analysis of paracellular permeability revealed that claudin-10b N48K maintained cation over anion selectivity but with a reduced general ion conductance. Furthermore, freeze fracture electron microscopy showed that claudin-10b N48K was associated with impaired tight junction strand formation and altered cis-oligomer formation. These data suggest that claudin-10b N48K causes anhidrosis and our findings are consistent with a combined effect from perturbed TJ function and increased degradation of claudin-10b N48K in the sweat glands. Furthermore, affected individuals present with Mg2+ retention, secondary hyperparathyroidism and mild kidney failure that suggest a disturbed reabsorption of cations in the kidneys. These renal-derived features recapitulate several phenotypic aspects detected in mice with kidney specific loss of both claudin-10 isoforms. Our study adds to the spectrum of phenotypes caused by tight junction proteins and demonstrates a pivotal role for claudin-10b in maintaining paracellular Na+ permeability for sweat production and kidney function.


Assuntos
Claudinas/genética , Rim/metabolismo , Isoformas de Proteínas/genética , Insuficiência Renal/genética , Animais , Transporte Biológico/genética , Cátions/metabolismo , Claudinas/metabolismo , Células Epiteliais/metabolismo , Humanos , Hipo-Hidrose , Rim/patologia , Camundongos , Microscopia Eletrônica , Mutação de Sentido Incorreto , Permeabilidade , Isoformas de Proteínas/metabolismo , Insuficiência Renal/metabolismo , Insuficiência Renal/patologia , Junções Íntimas
6.
J Am Soc Nephrol ; 28(10): 3118-3128, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28674042

RESUMO

Mice lacking distal tubular expression of CLDN10, the gene encoding the tight junction protein Claudin-10, show enhanced paracellular magnesium and calcium permeability and reduced sodium permeability in the thick ascending limb (TAL), leading to a urine concentrating defect. However, the function of renal Claudin-10 in humans remains undetermined. We identified and characterized CLDN10 mutations in two patients with a hypokalemic-alkalotic salt-losing nephropathy. The first patient was diagnosed with Bartter syndrome (BS) >30 years ago. At re-evaluation, we observed hypocalciuria and hypercalcemia, suggesting Gitelman syndrome (GS). However, serum magnesium was in the upper normal to hypermagnesemic range, thiazide responsiveness was not blunted, and genetic analyses did not show mutations in genes associated with GS or BS. Whole-exome sequencing revealed compound heterozygous CLDN10 sequence variants [c.446C>G (p.Pro149Arg) and c.465-1G>A (p.Glu157_Tyr192del)]. The patient had reduced urinary concentrating ability, with a preserved aquaporin-2 response to desmopressin and an intact response to furosemide. These findings were not in line with any other known salt-losing nephropathy. Subsequently, we identified a second unrelated patient showing a similar phenotype, in whom we detected compound heterozygous CLDN10 sequence variants [c.446C>G (p.(Pro149Arg) and c.217G>A (p.Asp73Asn)]. Cell surface biotinylation and immunofluorescence experiments in cells expressing the encoded mutants showed that only one mutation caused significant differences in Claudin-10 membrane localization and tight junction strand formation, indicating that these alterations do not fully explain the phenotype. These data suggest that pathogenic CLDN10 mutations affect TAL paracellular ion transport and cause a novel tight junction disease characterized by a non-BS, non-GS autosomal recessive hypokalemic-alkalotic salt-losing phenotype.


Assuntos
Alcalose/genética , Claudinas/genética , Hipopotassemia/genética , Erros Inatos do Transporte Tubular Renal/genética , Adolescente , Feminino , Humanos , Masculino , Adulto Jovem
7.
Ann N Y Acad Sci ; 1405(1): 5-15, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28628195

RESUMO

Renal tubular transport mechanisms are optimized to be energy efficient and tailored to local gradients and transport rates. The combined transcellular action of ion channels, transporters, and pumps, together with the paracellular pathway, enables kidney function. Monogenetic diseases and mouse models indicate that both trans- and paracellular proteins can become disease-causing candidates and may be targets for future therapeutic approaches. Recent advances in tight junction research have provided new insights into their structure, function, and regulation. The thick ascending limb (TAL) is a nephron segment with specific requirements for the paracellular pathway. It has to fuel the generation of the corticomedullary concentration gradient, to be watertight, and to provide a highly selective permeability for Na+ and divalent cations. Tight junction composition and function in the TAL is organized along the corticomedullary axis. Even on the level of a seemingly homogeneous tubular epithelium like the TAL, there is a separation of tight junction protein expression in the strands between the respective tricellular nexus of the junctional network. Here, we highlight some new insights from our recent work and that of others in this context. In addition, we provide some perspectives for the further study of paracellular transport mechanisms.


Assuntos
Cálcio/metabolismo , Alça do Néfron/metabolismo , Magnésio/metabolismo , Sódio/metabolismo , Junções Íntimas/metabolismo , Animais , Epitélio/metabolismo , Humanos , Transporte de Íons/fisiologia
8.
Ann N Y Acad Sci ; 1405(1): 102-115, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28633196

RESUMO

Claudins are integral components of tight junctions (TJs) in epithelia and endothelia. When expressed in cell lines devoid of TJs, claudins are able to form TJ-like strands at contacts between adjacent cells. According to a current model of TJ strand formation, claudin protomers assemble in an antiparallel double row within the plasma membrane of each cell (cis-interaction) while binding to corresponding double rows from the neighboring cells (trans-interaction). Cis-interaction was proposed to involve two interfaces of the protomers' first extracellular segment (extracellular loop (ECL)1). In the current study, three naturally occurring claudin-10 isoforms and two claudin-10 chimeras were used to investigate strand formation. All constructs were able to interact in cis (Förster/fluorescence resonance energy transfer (FRET)), to integrate into TJs of MDCK-C7 cells (confocal laser scanning microscopy), and to form TJ-like strands in HEK293 cells (freeze-fracture electron microscopy). Strand formation occurred despite the fact that isoform claudin-10a_i1 lacks both structural ECL1 elements reported to be crucial for cis-interaction. Furthermore, results from FRET experiments on claudin-10 chimeras indicated that identity of the first transmembrane region rather than ECL1 is decisive for claudin-10 cis-interaction. Therefore, in addition to the interaction interfaces suggested in the current model for TJ strand assembly, alternative interfaces must exist.


Assuntos
Membrana Celular/metabolismo , Claudinas/metabolismo , Isoformas de Proteínas/metabolismo , Junções Íntimas/metabolismo , Quimera , Transferência Ressonante de Energia de Fluorescência , Técnica de Fratura por Congelamento , Células HEK293 , Humanos , Microscopia Eletrônica
9.
Proc Natl Acad Sci U S A ; 114(20): 5271-5276, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28461473

RESUMO

Whether the tight junction is permeable to water remains highly controversial. Here, we provide evidence that the tricellular tight junction is important for paracellular water permeation and that Ig-like domain containing receptor 1 (ILDR1) regulates its permeability. In the mouse kidney, ILDR1 is localized to tricellular tight junctions of the distal tubules. Genetic knockout of Ildr1 in the mouse kidney causes polyuria and polydipsia due to renal concentrating defects. Microperfusion of live renal distal tubules reveals that they are impermeable to water in normal animals but become highly permeable to water in Ildr1 knockout animals whereas paracellular ionic permeabilities in the Ildr1 knockout mouse renal tubules are not affected. Vasopressin cannot correct paracellular water loss in Ildr1 knockout animals despite normal effects on the transcellular aquaporin-2-dependent pathway. In cultured renal epithelial cells normally lacking the expression of Ildr1, overexpression of Ildr1 significantly reduces the paracellular water permeability. Together, our study provides a mechanism of how cells transport water and shows how such a mechanism may be exploited as a therapeutic approach to maintain water homeostasis.


Assuntos
Aquaporinas/fisiologia , Capacidade de Concentração Renal/fisiologia , Receptores de Superfície Celular/fisiologia , Animais , Aquaporina 2/metabolismo , Aquaporinas/metabolismo , Transporte Biológico , Permeabilidade da Membrana Celular/fisiologia , Células Epiteliais/metabolismo , Rim/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais Distais/metabolismo , Masculino , Camundongos , Camundongos Knockout , Receptores de Superfície Celular/metabolismo , Junções Íntimas/metabolismo , Junções Íntimas/fisiologia , Vasopressinas/metabolismo
10.
Pflugers Arch ; 469(1): 115-121, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27942952

RESUMO

Claudins are tight junction membrane proteins and regulate the paracellular passage of ions and water. They can seal the paracellular cleft against solute passage but also form paracellular channels. They are tetraspan proteins with two extracellular segments. Claudin-10 exists in at least two functional isoforms, claudin-10a and claudin-10b, that differ in their first transmembrane segment and first extracellular segment. Both isoforms act as selective paracellular ion channels, either for anions (claudin-10a) or for cations (claudin-10b). Their diverse functions are reflected in completely different expression patterns in the body, especially in the kidney. Their structural and functional similarities and differences make them ideal subjects to study determinants of claudin charge selectivity and pore formation. This review aims to summarise research on permeability properties of the claudin-10 channels and their role in physiology and pathophysiology of the kidney.


Assuntos
Claudinas/metabolismo , Canais Iônicos/metabolismo , Rim/metabolismo , Animais , Claudinas/genética , Humanos , Canais Iônicos/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Junções Íntimas/metabolismo
11.
Proc Natl Acad Sci U S A ; 114(2): E219-E227, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28028216

RESUMO

The thick ascending limb (TAL) of Henle's loop drives paracellular Na+, Ca2+, and Mg2+ reabsorption via the tight junction (TJ). The TJ is composed of claudins that consist of four transmembrane segments, two extracellular segments (ECS1 and -2), and one intracellular loop. Claudins interact within the same (cis) and opposing (trans) plasma membranes. The claudins Cldn10b, -16, and -19 facilitate cation reabsorption in the TAL, and their absence leads to a severe disturbance of renal ion homeostasis. We combined electrophysiological measurements on microperfused mouse TAL segments with subsequent analysis of claudin expression by immunostaining and confocal microscopy. Claudin interaction properties were examined using heterologous expression in the TJ-free cell line HEK 293, live-cell imaging, and Förster/FRET. To reveal determinants of interaction properties, a set of TAL claudin protein chimeras was created and analyzed. Our main findings are that (i) TAL TJs show a mosaic expression pattern of either cldn10b or cldn3/cldn16/cldn19 in a complex; (ii) TJs dominated by cldn10b prefer Na+ over Mg2+, whereas TJs dominated by cldn16 favor Mg2+ over Na+; (iii) cldn10b does not interact with other TAL claudins, whereas cldn3 and cldn16 can interact with cldn19 to form joint strands; and (iv) further claudin segments in addition to ECS2 are crucial for trans interaction. We suggest the existence of at least two spatially distinct types of paracellular channels in TAL: a cldn10b-based channel for monovalent cations such as Na+ and a spatially distinct site for reabsorption of divalent cations such as Ca2+ and Mg2.


Assuntos
Claudinas/metabolismo , Alça do Néfron/metabolismo , Magnésio/metabolismo , Sódio/metabolismo , Animais , Claudinas/genética , Células HEK293 , Humanos , Alça do Néfron/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos Sprague-Dawley , Junções Íntimas/metabolismo
12.
Pflugers Arch ; 468(2): 293-303, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26497703

RESUMO

The thick ascending limb of Henle's loop (TAL) drives an important part of the reabsorption of divalent cations. This reabsorption occurs via the paracellular pathway formed by the tight junction (TJ), which in the TAL shows cation selectivity. Claudins, a family of TJ proteins, determine the permeability and selectivity of this pathway. Mice were fed with normal or high-Ca(2+) diet, and effects on the reabsorptive properties of cortical and medullary TAL segments were analysed by tubule microdissection and microperfusion. Claudin expression was investigated by immunostaining and quantitative PCR. We show that the TAL adapted to high Ca(2+) load in a sub-segment-specific manner. In medullary TAL, transcellular NaCl transport was attenuated. The transepithelial voltage decreased from 10.9 ± 0.6 mV at control diet to 8.3 ± 0.5 mV at high Ca(2+) load, thereby reducing the driving force for Ca(2+) and Mg(2+) uptake. Cortical TAL showed a reduction in paracellular Ca(2+) and Mg(2+) permeabilities from 8.2 ± 0.7 to 6.2 ± 0.5 ∙ 10(-4) cm/s and from 4.8 ± 0.5 to 3.0 ± 0.2 · 10(-4) cm/s at control and high-Ca(2+) diet, respectively. Expression, localisation and regulation of claudins 10, 14, 16 and 19 differed along the corticomedullary axis: Towards the cortex, the main site of divalent cation reabsorption in TAL, high-Ca(2+) intake led to a strong upregulation of claudin-14 within TAL TJs while claudin-16 and -19 were unaltered. Towards the inner medulla, only claudin-10 was present in TAL TJ strands. In summary, high-Ca(2+) diet induced a reduction of divalent cation reabsorption via a diminution of NaCl transport and driving force in mTAL and via decreased paracellular permeabilities in cTAL. We reveal an important regulatory pattern along the corticomedullary axis and improve the understanding how the kidney disposes of detrimental excess Ca(2+).


Assuntos
Cálcio da Dieta/farmacologia , Alça do Néfron/metabolismo , Reabsorção Renal , Junções Íntimas/metabolismo , Potenciais de Ação , Animais , Cálcio/metabolismo , Claudinas/genética , Claudinas/metabolismo , Feminino , Córtex Renal/efeitos dos fármacos , Córtex Renal/metabolismo , Medula Renal/efeitos dos fármacos , Medula Renal/metabolismo , Alça do Néfron/efeitos dos fármacos , Magnésio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Cloreto de Sódio/metabolismo , Junções Íntimas/efeitos dos fármacos , Regulação para Cima
13.
Biochem J ; 468(3): 449-58, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25849148

RESUMO

Claudins form a large family of TJ (tight junction) proteins featuring four transmembrane segments (TM1-TM4), two extracellular loops, one intracellular loop and intracellular N- and C-termini. They form continuous and branched TJ strands by homo- or heterophilic interaction within the same membrane (cis-interaction) and with claudins of the opposing lateral cell membrane (trans-interaction). In order to clarify the molecular organization of TJ strand formation, we investigated the cis-interaction of two abundant prototypic claudins. Human claudin-1 and claudin-3, fused to ECFP or EYFP at the N- or C-terminus, were expressed in the TJ-free cell line HEK (human embryonic kidney)-293. Using FRET analysis, the proximity of claudin N- and C-termini integrated in homopolymeric strands composed of claudin-3 or of heteropolymeric strands composed of claudin-1 and claudin-3 were determined. The main results are that (i) within homo- and heteropolymers, the average distance between the cytoplasmic ends of the TM1s of cis-interacting claudin molecules is shorter than the average distance between their TM4s, and (ii) TM1 segments of neighbouring claudins are oriented towards each other as the cytoplasmic end of TM1 is in close proximity to more other TM1 segments than TM4 is to other TM4 segments. The results indicate at least two different cis-interaction interfaces within claudin-3 homopolymers as well as within claudin-1/claudin-3 heteropolymers. The data provide novel insight into the molecular TJ architecture consistent with a model with an antiparallel double-row cis-arrangement of classic claudin protomers within strands.


Assuntos
Claudina-1/química , Claudina-3/química , Modelos Moleculares , Junções Íntimas/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Claudina-1/genética , Claudina-1/metabolismo , Claudina-3/genética , Claudina-3/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Citometria de Varredura a Laser , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Simulação de Acoplamento Molecular , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Junções Íntimas/metabolismo
14.
J Cell Sci ; 126(Pt 2): 554-64, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23203797

RESUMO

Tight junctions seal the paracellular cleft of epithelia and endothelia, form vital barriers between tissue compartments and consist of tight-junction-associated marvel proteins (TAMPs) and claudins. The function of TAMPs and the interaction with claudins are not understood. We therefore investigated the binding between the TAMPs occludin, tricellulin, and marvelD3 and their interaction with claudins in living tight-junction-free human embryonic kidney-293 cells. In contrast to claudins and occludin, tricellulin and marvelD3 showed no enrichment at cell-cell contacts indicating lack of homophilic trans-interaction between two opposing cell membranes. However, occludin, marvelD3 and tricellulin exhibited homophilic cis-interactions, along one plasma membrane, as measured by fluorescence resonance energy transfer. MarvelD3 also cis-interacted with occludin and tricellulin heterophilically. Classic claudins, such as claudin-1 to -5 may show cis-oligomerization with TAMPs, whereas the non-classic claudin-11 did not. Claudin-1 and -5 improved enrichment of occludin and tricellulin at cell-cell contacts. The low mobile claudin-1 reduced the membrane mobility of the highly mobile occludin and tricellulin, as studied by fluorescence recovery after photobleaching. Co-transfection of claudin-1 with TAMPs led to changes of the tight junction strand network of this claudin to a more physiological morphology, depicted by freeze-fracture electron microscopy. The results demonstrate multilateral interactions between the tight junction proteins, in which claudins determine the function of TAMPs and vice versa, and provide deeper insights into the tight junction assembly.


Assuntos
Claudinas/metabolismo , Proteína 2 com Domínio MARVEL/metabolismo , Ocludina/metabolismo , Junções Íntimas/metabolismo , Animais , Células CACO-2 , Cães , Células HEK293 , Humanos , Células Madin Darby de Rim Canino
15.
Biochim Biophys Acta ; 1798(11): 2048-57, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20655293

RESUMO

The paracellular barrier of epithelia and endothelia is established by several tight junction proteins including claudin-3. Although claudin-3 is present in many epithelia including skin, lung, kidney, and intestine and in endothelia, its function is unresolved as yet. We therefore characterized claudin-3 by stable transfection of MDCK II kidney tubule cells with human claudin-3 cDNA. Two clone systems were analyzed, exhibiting high or low claudin-2 expression, respectively. Expression of other claudins was unchanged. Ultrastructurally, tight junction strands were changed toward uninterrupted and rounded meshwork loops. Functionally, the paracellular resistance of claudin-3-transfected monolayers was strongly elevated, causing an increase in transepithelial resistance compared to vector controls. Permeabilities for mono- and divalent cations and for anions were decreased. In the high-claudin-2 system, claudin-3 reduced claudin-2-induced cation selectivity, while in the low-claudin-2 system no charge preference was observed, the latter thus reflecting the "intrinsic" action of claudin-3. Furthermore, the passage of the paracellular tracers fluorescein (332Da) and FD-4 (4kDa) was decreased, whereas the permeability to water was not affected. We demonstrate that claudin-3 alters the tight junction meshwork and seals the paracellular pathway against the passage of small ions of either charge and uncharged solutes. Thus, in a kidney model epithelium, claudin-3 acts as a general barrier-forming protein.


Assuntos
Proteínas de Membrana/fisiologia , Junções Íntimas/metabolismo , Animais , Células Cultivadas , Claudina-3 , Claudina-4 , Claudinas , Cães , Humanos , Permeabilidade , Junções Íntimas/ultraestrutura , Transfecção , Água/química
16.
J Cell Sci ; 123(Pt 11): 1913-21, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20460438

RESUMO

Whether or not significant amounts of water pass the tight junction (TJ) of leaky epithelia is still unresolved, because it is difficult to separate transcellular water flux from TJ-controlled paracellular water flux. Using an approach without differentiating technically between the transcellular and paracellular route, we measured transepithelial water flux with and without selective molecular perturbation of the TJ to unequivocally attribute changes to the paracellular pathway. To this end, MDCK C7 cells were stably transfected with either claudin-2 or claudin-10b, two paracellular cation-channel-forming TJ proteins that are not endogenously expressed in this cell line. Claudin-2 is typical of leaky, water-transporting epithelia, such as the kidney proximal tubule, whereas claudin-10b is present in numerous epithelia, including water-impermeable segments of the loop of Henle. Neither transfection altered the expression of endogenous claudins or aquaporins. Water flux was induced by an osmotic gradient, a Na(+) gradient or both. Under all conditions, water flux in claudin-2-transfected cells was elevated compared with vector controls, indicating claudin-2-mediated paracellular water permeability. Na(+)-driven water transport in the absence of an osmotic gradient indicates a single-file mechanism. By contrast, claudin-10b transfection did not alter water flux. We conclude that claudin-2, but not claudin-10b, forms a paracellular water channel and thus mediates paracellular water transport in leaky epithelia.


Assuntos
Aquaporinas/metabolismo , Células Epiteliais/metabolismo , Proteínas de Membrana/metabolismo , Junções Íntimas/metabolismo , Água/metabolismo , Animais , Aquaporinas/genética , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/genética , Claudinas , Clonagem Molecular , Cães , Células Epiteliais/patologia , Humanos , Túbulos Renais Proximais/patologia , Alça do Néfron/patologia , Proteínas de Membrana/genética , Transporte Proteico , Canais de Sódio/genética , Canais de Sódio/metabolismo , Transgenes/genética
17.
Mol Biol Cell ; 20(16): 3713-24, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19535456

RESUMO

Tricellulin is a tight junction protein localized in tricellular tight junctions (tTJs), the meeting points of three cells, but also in bicellular tight junctions (bTJs). To investigate its specific barrier functions in bTJs and tTJs, TRIC-a was expressed in low-level tricellulin-expressing cells, and MDCK II, either in all TJs or only in tTJs. When expressed in all TJs, tricellulin increased paracellular electrical resistance and decreased permeability to ions and larger solutes, which are associated with enhanced ultrastructural integrity of bTJs toward enhanced strand linearity. In tTJs in contrast, ultrastructure was unchanged and tricellulin minimized permeability to macromolecules but not to ions. This paradox is explained by properties of the tTJ central tube which is wide enough for passage of macromolecules, but too rare to contribute significantly to ion permeability. In conclusion, at low tricellulin expression the tTJ central tube forms a pathway for macromolecules. At higher expression, tricellulin forms a barrier in tTJs effective only for macromolecules and in bTJs for solutes of all sizes.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Íons/metabolismo , Proteínas de Membrana/metabolismo , Junções Íntimas/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular , Claudina-1 , Cães , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Proteína 2 com Domínio MARVEL , Proteínas de Membrana/genética , Ocludina , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Junções Íntimas/ultraestrutura
18.
Ann N Y Acad Sci ; 1165: 152-62, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19538301

RESUMO

During the past decade, claudins have been established as major determinants of paracellular permeablilty in epithelia. In the kidney, each nephron segment expresses a distinct pattern of claudins. Cells of the thick ascending limb of Henle's loop (TAL), which is characterized by high paracellular cation permeability, co-express an unusually large number of different claudins: claudin-10, -16, and -19 and, depending on the species, also claudin-3, -4, -8, and/or -11. The function of most of these claudins has been investigated in vitro. We present a summary of their function with special emphasis on claudin-16 and -19. Mutations in the corresponding human genes lead to severely impaired renal Ca(2+) and Mg(2+) handling. To date, 42 different claudin-16 mutations and three claudin-19 mutations have been reported. These mutations prevent the claudins from reaching the surface membrane, decrease membrane residence time, or render them functionless. In spite of the clear clinical symptoms such as hypomagnesemia, hypercalciuria, nephrocalcinosis, and renal insufficiency, mechanisms that link claudin-16 and -19 to these symptoms are still unknown. Depending on the cell type used in overexpression studies, claudin-16 appears to cause a mild increase in paracellular Mg(2+)-permeability or a pronounced increase in Na(+) permeability. Claudin-19 selectively decreases Cl(-) permeability, thus synergistically increasing relative cation permeability, or indiscriminately decreases paracellular permeability. In the light of these results it is hypothesized that the renal Mg(2+)/Ca(2+) waste may not be solely due to reduced resorption in the TAL but at least in part to paracellular back-leak of Mg(2+)/Ca(2+) into the tubular lumen of the distal convoluted tubule.


Assuntos
Alça do Néfron/fisiologia , Proteínas de Membrana/metabolismo , Animais , Permeabilidade da Membrana Celular , Humanos , Hipercalciúria/metabolismo , Proteínas de Membrana/genética , Mutação , Nefrocalcinose/metabolismo
19.
Ann N Y Acad Sci ; 1165: 211-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19538309

RESUMO

Tight junctions form the paracellular barrier for ions and uncharged solutes not only in "tight" but also in "leaky" epithelia. In the premolecular era of tight junction research, this was believed to be achieved in a perfect or less perfect way, depending mainly on the amount of horizontally oriented tight junction strands. During the past decade it emerged that tight junction molecules, such as claudin-1 and many others, strengthen the barrier, while a few claudins, such as claudin-2 or -10, weaken it. This report focuses on three claudins: one channel former and two barrier builders. Claudin-2 represents the prototype of a paracellular, channel-forming, tight junction protein responsible for specific transfer of solutes across the epithelium without entering the cells. This channel is selective for small cations but nearly impermeable to anions and uncharged solutes of any size. In contrast, claudin-5, a tight junction protein typical for all endothelia but also found in some epithelia, was characterized as a potent barrier builder. Claudin-8, another barrier builder, was demonstrated to be regulated by Na(+) uptake in surface epithelial cells of human colon. Here, aldosterone enhanced Na(+) absorption by dual action: transcellularly by inducing the epithelial sodium channel and paracellularly by preventing back leakage of absorbed Na(+) by upregulating claudin-8.


Assuntos
Proteínas de Membrana/metabolismo , Junções Íntimas/metabolismo , Animais , Cátions/metabolismo , Permeabilidade da Membrana Celular , Claudinas , Colo/metabolismo , Células Epiteliais/metabolismo , Humanos , Sódio/metabolismo , Regulação para Cima
20.
Biochem Biophys Res Commun ; 378(1): 45-50, 2009 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-19000657

RESUMO

In distal colon, the limiting factor for Na(+) absorption is represented by the epithelial sodium channel (ENaC). During absorption, high transepithelial Na(+) gradients are observed. In human colon and in HT-29/B6-GR cells, we investigated whether Na(+) back-leakage is prevented by paracellular sealing. Tissues and cells were incubated with corticosteroids. Barrier properties were analyzed in electrophysiological experiments. Subsequently, analysis of ENaC and tight junction protein expression, localization, and regulation was performed. In colon, nanomolar aldosterone induced sodium absorption via ENaC. Concomitantly, paracellular (22)Na(+) permeability was reduced by half and claudin-8 within the tight junction complex was nearly doubled. Real-time PCR validated an increase of claudin-8 transcripts. Two-path impedance spectroscopy following ENaC induction in HT-29/B6-GR revealed a specific increase of paracellular resistance. These results represent an important physiological implication: Na(+) absorption is paralleled by claudin-8-mediated sealing of the paracellular barrier to prevent Na(+) back-leakage, supporting steep Na(+) gradients in distal colon.


Assuntos
Colo/metabolismo , Proteínas de Membrana/metabolismo , Sódio/metabolismo , Junções Íntimas/metabolismo , Aldosterona/metabolismo , Aldosterona/farmacologia , Linhagem Celular , Permeabilidade da Membrana Celular , Células Cultivadas , Claudinas , Colo/efeitos dos fármacos , Humanos , Transporte de Íons , Ocludina , Transdução de Sinais , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...