Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(8): 3532-3539, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37018631

RESUMO

Ferromagnetic La0.7Sr0.3Mn1-xRuxO3 epitaxial multilayers with controlled variation of the Ru/Mn content were synthesized to engineer canted magnetic anisotropy and variable exchange interactions, and to explore the possibility of generating a Dzyaloshinskii-Moriya interaction. The ultimate aim of the multilayer design is to provide the conditions for the formation of domains with nontrivial magnetic topology in an oxide thin film system. Employing magnetic force microscopy and Lorentz transmission electron microscopy in varying perpendicular magnetic fields, magnetic stripe domains separated by Néel-type domain walls as well as Néel skyrmions smaller than 100 nm in diameter were observed. These findings are consistent with micromagnetic modeling, taking into account a sizable Dzyaloshinskii-Moriya interaction arising from the inversion symmetry breaking and possibly from strain effects in the multilayer system.

2.
J Phys Condens Matter ; 30(44): 445402, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30255852

RESUMO

Local-probe imaging of the ferroelectric domain structure and auxiliary bulk pyroelectric measurements were conducted at low temperatures with the aim to clarify the essential aspects of the orbitally driven phase transition in GaMo4S8, a lacunar spinel crystal that can be viewed as a spin-hole analogue of its GaV4S8 counterpart. We employed multiple scanning probe techniques combined with symmetry and mechanical compatibility analysis to uncover the hierarchical domain structures, developing on the 10-100 nm scale. The identified domain architecture involves a plethora of ferroelectric domain boundaries and junctions, including primary and secondary domain walls in both electrically neutral and charged configurations, and topological line defects transforming neutral secondary walls into two oppositely charged ones.

3.
Sci Rep ; 7: 44663, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28294193

RESUMO

GaV4S8 is a multiferroic semiconductor hosting Néel-type magnetic skyrmions dressed with electric polarization. At Ts = 42 K, the compound undergoes a structural phase transition of weakly first-order, from a non-centrosymmetric cubic phase at high temperatures to a polar rhombohedral structure at low temperatures. Below Ts, ferroelectric domains are formed with the electric polarization pointing along any of the four 〈111〉 axes. Although in this material the size and the shape of the ferroelectric-ferroelastic domains may act as important limiting factors in the formation of the Néel-type skyrmion lattice emerging below TC = 13 K, the characteristics of polar domains in GaV4S8 have not been studied yet. Here, we report on the inspection of the local-scale ferroelectric domain distribution in rhombohedral GaV4S8 using low-temperature piezoresponse force microscopy. We observed mechanically and electrically compatible lamellar domain patterns, where the lamellae are aligned parallel to the (100)-type planes with a typical spacing between 100 nm-1.2 µm. Since the magnetic pattern, imaged by atomic force microscopy using a magnetically coated tip, abruptly changes at the domain boundaries, we expect that the control of ferroelectric domain size in polar skyrmion hosts can be exploited for the spatial confinement and manipulation of Néel-type skyrmions.

4.
Nano Lett ; 16(9): 5612-8, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27562791

RESUMO

CuO2SeO3 is an insulating material that hosts topologically nontrivial spin whirls, so-called skyrmions, and exhibits magnetoelectric coupling allowing to manipulate these skyrmions by means of electric fields. We report magnetic force microscopy imaging of the real-space spin structure on the surface of a bulk single crystal of CuO2SeO3. Based on measurements of the electric polarization using Kelvin-probe force microscopy, we develop a heuristic description of the magnetoelectric properties in CuO2SeO3. The model successfully describes the dependency of the electric polarization on the magnetization in all magnetically modulated phases.

6.
ACS Nano ; 8(4): 3294-301, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24601525

RESUMO

In the field of molecular electronics, thin films of molecules adsorbed on insulating surfaces are used as the functional building blocks of electronic devices. Control of the structural and electronic properties of the thin films is required for reliably operating devices. Here, noncontact atomic force and Kelvin probe force microscopies have been used to investigate the growth and electrostatic landscape of pentacene on KBr(001) and KCl(001) surfaces. We have found that, together with molecular islands of upright standing pentacene, a new phase of tilted molecules appears near step edges on KBr. Local contact potential differences (LCPD) have been studied with both Kelvin experiments and density functional theory calculations. Our images reveal that differently oriented molecules display different LCPD and that their value is independent of the number of molecular layers. These results point to the formation of an interface dipole, which may be explained by a partial charge transfer from the pentacene to the surface. Moreover, the monitoring of the evolution of the pentacene islands shows that they are strongly affected by dewetting: Multilayers build up at the expense of monolayers, and in the Kelvin images, previously unknown line defects appear, which reveal the epitaxial growth of pentacene crystals.

7.
Nano Lett ; 9(2): 763-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19159245

RESUMO

We report on both the assembly of noble-metal nanowires by means of the nanotechnological and large-scale integrable approach of ferroelectric lithography and their performance testing upon electrical transport. Our results on LiNbO(3) single crystal templates show that the deposition of different elemental metals from ionic solutions by photochemical reduction is confined to the ferroelectric 180 degrees domain walls. Current-voltage-characteristics recorded from such nanowires of typically 30-300 microm in length revealed an Ohmic behavior that even improved with time. Additionally, we also examined the local topographic and potentiostatic properties of such wires using dynamic scanning force microscopy in combination with Kelvin probe force microscopy.


Assuntos
Elétrons , Ferro/química , Nanofios/química , Microscopia Eletrônica , Nanofios/ultraestrutura
8.
Nano Lett ; 8(1): 110-3, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18095730

RESUMO

The effect of molecular orientation at metal contacts on interface properties was determined by examining the local work function of porphyrin on atomically smooth graphite. The orientation was varied by self-assembly from the vapor phase, and the local potential was quantified by Kelvin force microscopy (scanning surface potential microscopy). When the porphyrin ring is oriented parallel to the substrate, the surface work function is 50 mV less than that of the highly ordered pyrolytic graphite; in contrast, when the porphyrin molecular plane is oriented perpendicular to the substrate, the surface work function is unchanged. The orientation dependence of the surface work function is determined by the geometric relationships between the delocalized charge densities in the molecule and substrate and possible interface bonding. The differences in interface properties with molecular configuration have important design implications to molecular electronic and organic electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...