Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 14(661): eabo5598, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36070369

RESUMO

A successful HIV-1 vaccine will require induction of a polyclonal neutralizing antibody (nAb) response, yet vaccine-mediated induction of such a response in primates remains a challenge. We found that a stabilized HIV-1 CH505 envelope (Env) trimer formulated with a Toll-like receptor 7/8 agonist induced potent HIV-1 polyclonal nAbs that correlated with protection from homologous simian-human immunodeficiency virus (SHIV) infection. The serum dilution that neutralized 50% of virus replication (ID50 titer) required to protect 90% of macaques was 1:364 against the challenge virus grown in primary rhesus CD4+ T cells. Structural analyses of vaccine-induced nAbs demonstrated targeting of the Env CD4 binding site or the N156 glycan and the third variable loop base. Autologous nAb specificities similar to those elicited in macaques by vaccination were isolated from the human living with HIV from which the CH505 Env immunogen was derived. CH505 viral isolates were isolated that mutated the V1 to escape both the infection-induced and vaccine-induced antibodies. These results define the specificities of a vaccine-induced nAb response and the protective titers of HIV-1 vaccine-induced nAbs required to protect nonhuman primates from low-dose mucosal challenge by SHIVs bearing a primary transmitted/founder Env.


Assuntos
Vacinas contra a AIDS , Doenças Transmissíveis , HIV-1 , Vírus da Imunodeficiência Símia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Imunização , Macaca mulatta , Vacinação
2.
NPJ Vaccines ; 5(1): 107, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33298954

RESUMO

A preventative HIV-1 vaccine is an essential intervention needed to halt the HIV-1 pandemic. Neutralizing antibodies protect against HIV-1 infection in animal models, and thus an approach toward a protective HIV-1 vaccine is to induce broadly cross-reactive neutralizing antibodies (bnAbs). One strategy to achieve this goal is to define envelope (Env) evolution that drives bnAb development in infection and to recreate those events by vaccination. In this study, we report the immunogenicity, safety, and efficacy in rhesus macaques of an SIV-based integrase defective lentiviral vector (IDLV) expressing sequential gp140 Env immunogens derived from the CH505 HIV-1-infected individual who made the CH103 and CH235 bnAb lineages. Immunization with IDLV expressing sequential CH505 Envs induced higher magnitude and more durable binding and neutralizing antibody responses compared to protein or DNA +/- protein immunizations using the same sequential envelopes. Compared to monkeys immunized with a vector expressing Envs alone, those immunized with the combination of IDLV expressing Env and CH505 Env protein demonstrated improved durability of antibody responses at six months after the last immunization as well as lower peak viremia and better virus control following autologous SHIV-CH505 challenge. There was no evidence of vector mobilization or recombination in the immunized and challenged monkeys. Although the tested vaccines failed to induce bnAbs and to mediate significant protection following SHIV-challenge, our results show that IDLV proved safe and successful at inducing higher titer and more durable immune responses compared to other vaccine platforms.

3.
NPJ Vaccines ; 5(1): 36, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411399

RESUMO

Despite incredible scientific efforts, there is no cure for HIV infection. While antiretroviral treatment (ART) can help control the virus and prevent transmission, it cannot eradicate HIV from viral reservoirs established before the initiation of therapy. Further, HIV-infected individuals reliably exhibit viral rebound when ART is interrupted, suggesting that the host immune response fails to control viral replication in persistent reservoirs. Therapeutic vaccines are one current approach to improving antiviral host immune responses and enhance long term virus control. In the present study, we used an integrase defective lentiviral vector (IDLV) expressing SIV-Gag to boost anti-Gag specific immune responses in macaques chronically infected with the tier-2 SHIV-1157(QNE)Y173H. A single immunization with IDLV-SIV-Gag induced durable (>20 weeks) virus control in 55% of the vaccinated macaques, correlating with an increased magnitude of SIV-Gag specific CD8+ T-cell responses. IDLV-based therapeutic vaccines are therefore an effective approach to improve virus specific CD8+ T-cell responses and mediate virus control.

4.
EBioMedicine ; 14: 97-111, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27919754

RESUMO

HIV-1 infection occurs primarily through mucosal transmission. Application of biologically relevant mucosal models can advance understanding of the functional properties of antibodies that mediate HIV protection, thereby guiding antibody-based vaccine development. Here, we employed a human ex vivo vaginal HIV-1 infection model and a rhesus macaque in vivo intrarectal SHIV challenge model to probe the protective capacity of monoclonal broadly-neutralizing (bnAb) and non-neutralizing Abs (nnAbs) that were functionally modified by isotype switching. For human vaginal explants, we developed a replication-competent, secreted NanoLuc reporter virus system and showed that CD4 binding site bnAbs b12 IgG1 and CH31 IgG1 and IgA2 isoforms potently blocked HIV-1JR-CSF and HIV-1Bal26 infection. However, IgG1 and IgA nnAbs, either alone or together, did not inhibit infection despite the presence of FcR-expressing effector cells in the tissue. In macaques, the CH31 IgG1 and IgA2 isoforms infused before high-dose SHIV challenge were completely to partially protective, respectively, while nnAbs (CH54 IgG1 and CH38 mIgA2) were non-protective. Importantly, in both mucosal models IgG1 isotype bnAbs were more protective than the IgA2 isotypes, attributable in part to greater neutralization activity of the IgG1 variants. These findings underscore the importance of potent bnAb induction as a primary goal of HIV-1 vaccine development.


Assuntos
Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Mucosa/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Biomarcadores , Modelos Animais de Doenças , Feminino , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/genética , Humanos , Imunidade nas Mucosas , Imunofenotipagem , Leucócitos/imunologia , Leucócitos/metabolismo , Macaca mulatta , Mucosa/virologia , Testes de Neutralização , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Vagina/imunologia , Vagina/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...