Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(10): 2820-2830, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37205283

RESUMO

We demonstrate local phonon analysis of single AlN nanocrystals by two complementary imaging spectroscopic techniques: tip-enhanced Raman scattering (TERS) and nano-Fourier transform infrared (nano-FTIR) spectroscopy. Strong surface optical (SO) phonon modes appear in the TERS spectra with their intensities revealing a weak polarization dependence. The local electric field enhancement stemming from the plasmon mode of the TERS tip modifies the phonon response of the sample, making the SO mode dominate over other phonon modes. The TERS imaging allows the spatial localization of the SO mode to be visualized. We were able to probe the angle anisotropy on the SO phonon modes in AlN nanocrystals with nanoscale spatial resolution. The excitation geometry and the local nanostructure surface profile determine the frequency position of SO modes in nano-FTIR spectra. An analytical calculation explains the behaviour of SO mode frequencies vs. tip position with respect to the sample.

2.
Nanomaterials (Basel) ; 12(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35808032

RESUMO

This work presents an overview of the latest results and new data on the optical response from spherical CdSe nanocrystals (NCs) obtained using surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS). SERS is based on the enhancement of the phonon response from nanoobjects such as molecules or inorganic nanostructures placed on metal nanostructured substrates with a localized surface plasmon resonance (LSPR). A drastic SERS enhancement for optical phonons in semiconductor nanostructures can be achieved by a proper choice of the plasmonic substrate, for which the LSPR energy coincides with the laser excitation energy. The resonant enhancement of the optical response makes it possible to detect mono- and submonolayer coatings of CdSe NCs. The combination of Raman scattering with atomic force microscopy (AFM) using a metallized probe represents the basis of TERS from semiconductor nanostructures and makes it possible to investigate their phonon properties with nanoscale spatial resolution. Gap-mode TERS provides further enhancement of Raman scattering by optical phonon modes of CdSe NCs with nanometer spatial resolution due to the highly localized electric field in the gap between the metal AFM tip and a plasmonic substrate and opens new pathways for the optical characterization of single semiconductor nanostructures and for revealing details of their phonon spectrum at the nanometer scale.

3.
Faraday Discuss ; 214: 309-323, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30839033

RESUMO

Since the first report in the early 2000s, there have been several experimental configurations that have demonstrated enhancement and spatial resolution of tip-enhanced Raman spectroscopy (TERS). The combination of a plasmonic substrate and a metallic tip is one suitable approach to achieve even higher enhancement and lateral resolution. In this contribution, we demonstrate TERS on a monolayer of MoS2 on an array of Au nanodisks. The Au nanodisks were prepared by electron beam writing. Thereafter, MoS2 was transferred onto the plasmonic substrate via the exfoliation technique. We witness an unprecedented enhancement and spatial resolution in the experiments. In the TERS image a ring-like shape is observed that matches the edges of the nanodisks. TERS enhancement at the edges is about 170 times stronger than at the center of the nanodisks. For a better understanding of the experimental results, finite element method (FEM) simulations were employed to simulate the TERS image of the MoS2/plasmonic heterostructure. Our calculations show a higher electric field concentration at the edges that exponentially decays to the center. Therefore, it reproduces the ring-like shape of the experimental image. Moreover, the calculations suggest a TERS enhancement of 135 at the edges compared to the center, which is in very good agreement with the experimental data. According to our calculations, the spatial resolution is also increased at the edges. For comparison, FEM simulations of a tip-flat metal substrate system (conventional gap-mode TERS) were carried out. The calculations confirmed a 110 times stronger enhancement at the edges of the nanodisks than that of conventional gap-mode TERS and explained the experimental maps. Our results provide not only a deeper understanding of the TERS mechanism of this heterostructure, but can also help in realizing highly efficient TERS experiments using similar systems.

4.
Beilstein J Nanotechnol ; 9: 2646-2656, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416915

RESUMO

We report a study of the infrared response by localized surface plasmon resonance (LSPR) modes in gold micro- and nanoantenna arrays with various morphologies and surface-enhanced infrared absorption (SEIRA) by optical phonons of semiconductor nanocrystals (NCs) deposited on the arrays. The arrays of nano- and microantennas fabricated with nano- and photolithography reveal infrared-active LSPR modes of energy ranging from the mid to far-infrared that allow the IR response from very low concentrations of organic and inorganic materials deposited onto the arrays to be analyzed. The Langmuir-Blodgett technology was used for homogeneous deposition of CdSe, CdS, and PbS NC monolayers on the antenna arrays. The structural parameters of the arrays were confirmed by scanning electron microscopy. 3D full-wave electromagnetic simulations of the electromagnetic field distribution around the micro- and nanoantennas were employed to realize the maximal SEIRA enhancement for structural parameters of the arrays whereby the LSPR and the NC optical phonon energies coincide. The SEIRA experiments quantitatively confirmed the computational results. The maximum SEIRA enhancement was observed for linear nanoantennas with optimized structural parameters determined from the electromagnetic simulations. The frequency position of the feature's absorption seen in the SEIRA response evidences that the NC surface and transverse optical phonons are activated in the infrared spectra.

5.
Nanoscale ; 10(6): 2755-2763, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29308796

RESUMO

In this article, we present the results of a gap-plasmon tip-enhanced Raman scattering study of MoS2 monolayers deposited on a periodic array of Au nanostructures on a silicon substrate forming a two dimensional (2D) crystal/plasmonic heterostructure. We observe a giant Raman enhancement of the phonon modes in the MoS2 monolayer located in the plasmonic gap between the Au tip apex and Au nanoclusters. Tip-enhanced Raman mapping allows us to determine the gap-plasmon field distribution responsible for the formation of hot spots. These hot spots provide an unprecedented giant Raman enhancement of 5.6 × 108 and a spatial resolution as small as 2.3 nm under ambient conditions. Moreover, due to strong hot electron doping in the order of 1.8 × 1013 cm-2, we observe a structural change of MoS2 from the 2H to the 1T phase. Owing to the very good spatial resolution, we are able to spatially resolve those doping sites. To the best of our knowledge, this is the first time reporting of such a phenomenon with nm spatial resolution. Our results will open the perspectives of optical diagnostics with nanometer resolution for many other 2D materials.

6.
Beilstein J Nanotechnol ; 8: 975-981, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28546892

RESUMO

Nanoantenna-assisted plasmonic enhancement of IR absorption and Raman scattering was employed for studying the vibrational modes in organic molecules. Ultrathin cobalt phthalocyanine films (3 nm) were deposited on Au nanoantenna arrays with specified structural parameters. The deposited organic films reveal the enhancement of both Raman scattering and IR absorption vibrational modes. To extend the possibility of implementing surface-enhanced infrared absorption (SEIRA) for biological applications, the detection and analysis of the steroid hormone cortisol was demonstrated.

7.
Beilstein J Nanotechnol ; 7: 1519-1526, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144502

RESUMO

The study of infrared absorption by linear gold nanoantennas fabricated on a Si surface with underlying SiO2 layers of various thicknesses allowed the penetration depth of localized surface plasmons into SiO2 to be determined. The value of the penetration depth derived experimentally (20 ± 10 nm) corresponds to that obtained from electromagnetic simulations (12.9-30.0 nm). Coupling between plasmonic excitations of gold nanoantennas and optical phonons in SiO2 leads to the appearance of new plasmon-phonon modes observed in the infrared transmission spectra the frequencies of which are well predicted by the simulations.

8.
Beilstein J Nanotechnol ; 6: 749-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25977845

RESUMO

We present the results of a Raman study of optical phonons in CuS nanocrystals (NCs) with a low areal density fabricated through the Langmuir-Blodgett technology on nanopatterned Au nanocluster arrays using a combination of surface- and interference-enhanced Raman scattering (SERS and IERS, respectively). Micro-Raman spectra of one monolayer of CuS NCs deposited on a bare Si substrate reveal only features corresponding to crystalline Si. However, a new relatively strong peak occurs in the Raman spectrum of CuS NCs on Au nanocluster arrays at 474 cm(-1). This feature is related to the optical phonon mode in CuS NCs and manifests the SERS effect. For CuS NCs deposited on a SiO2 layer this phonon mode is also observed due to the IERS effect. Its intensity changes periodically with increasing SiO2 layer thickness for different laser excitation lines and is enhanced by a factor of about 30. CuS NCs formed on Au nanocluster arrays fabricated on IERS substrates combine the advantages of SERS and IERS and demonstrate stronger SERS enhancement allowing for the observation of Raman signals from CuS NCs with an ultra-low areal density.

9.
Beilstein J Nanotechnol ; 6: 2388-95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26734529

RESUMO

We present the results of an investigation of surface-enhanced Raman scattering (SERS) by optical phonons in colloidal CdSe nanocrystals (NCs) homogeneously deposited on both arrays of Au nanoclusters and Au dimers using the Langmuir-Blodgett technique. The coverage of the deposited NCs was less than one monolayer, as determined by transmission and scanning electron microscopy. SERS by optical phonons in CdSe nanocrystals showed a significant enhancement that depends resonantly on the Au nanocluster and dimer size, and thus on the localized surface plasmon resonance (LSPR) energy. The deposition of CdSe nanocrystals on the Au dimer nanocluster arrays enabled us to study the polarization dependence of SERS. The maximal SERS signal was observed for light polarization parallel to the dimer axis. The polarization ratio of the SERS signal parallel and perpendicular to the dimer axis was 20. The SERS signal intensity was also investigated as a function of the distance between nanoclusters in a dimer. Here the maximal SERS enhancement was observed for the minimal distance studied (about 10 nm), confirming the formation of SERS "hot spots".

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...