Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766031

RESUMO

Hematopoietic multipotent progenitors (MPPs) regulate blood cell production to appropriately meet the biological demands of the human body. Human MPPs remain ill-defined whereas mouse MPPs have been well characterized with distinct immunophenotypes and lineage potencies. Using multiomic single cell analyses and complementary functional assays, we identified new human MPPs and oligopotent progenitor populations within Lin-CD34+CD38dim/lo adult bone marrow with distinct biomolecular and functional properties. These populations were prospectively isolated based on expression of CD69, CLL1, and CD2 in addition to classical markers like CD90 and CD45RA. We show that within the canonical Lin-CD34+CD38dim/loCD90CD45RA-MPP population, there is a CD69+ MPP with long-term engraftment and multilineage differentiation potential, a CLL1+ myeloid-biased MPP, and a CLL1-CD69-erythroid-biased MPP. We also show that the canonical Lin-CD34+CD38dim/loCD90-CD45RA+ LMPP population can be separated into a CD2+ LMPP with lymphoid and myeloid potential, a CD2-LMPP with high lymphoid potential, and a CLL1+ GMP with minimal lymphoid potential. We used these new HSPC profiles to study human and mouse bone marrow cells and observe limited cell type specific homology between humans and mice and cell type specific changes associated with aging. By identifying and functionally characterizing new adult MPP sub-populations, we provide an updated reference and framework for future studies in human hematopoiesis.

2.
Cancer Cell ; 42(1): 119-134.e12, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38194912

RESUMO

The period between "successful" treatment of localized breast cancer and the onset of distant metastasis can last many years, representing an unexploited window to eradicate disseminated disease and prevent metastases. We find that the source of recurrence-disseminated tumor cells (DTCs) -evade endogenous immunity directed against tumor neoantigens. Although DTCs downregulate major histocompatibility complex I, this does not preclude recognition by conventional T cells. Instead, the scarcity of interactions between two relatively rare populations-DTCs and endogenous antigen-specific T cells-underlies DTC persistence. This scarcity is overcome by any one of three immunotherapies that increase the number of tumor-specific T cells: T cell-based vaccination, or adoptive transfer of T cell receptor or chimeric antigen receptor T cells. Each approach achieves robust DTC elimination, motivating discovery of MHC-restricted and -unrestricted DTC antigens that can be targeted with T cell-based immunotherapies to eliminate the reservoir of metastasis-initiating cells in patients.


Assuntos
Neoplasias da Mama , Linfócitos T , Humanos , Feminino , Evasão da Resposta Imune , Transferência Adotiva , Neoplasias da Mama/terapia , Imunoterapia
3.
Blood Cancer Discov ; : OF1-OF18, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261864

RESUMO

Rare preleukemic hematopoietic stem cells (pHSC) harboring only the initiating mutations can be detected at the time of acute myeloid leukemia (AML) diagnosis. pHSCs are the origin of leukemia and a potential reservoir for relapse. Using primary human samples and gene editing to model isocitrate dehydrogenase 1 (IDH1) mutant pHSCs, we show epigenetic, transcriptional, and metabolic differences between pHSCs and healthy hematopoietic stem cells (HSC). We confirm that IDH1-driven clonal hematopoiesis is associated with cytopenia, suggesting an inherent defect to fully reconstitute hematopoiesis. Despite giving rise to multilineage engraftment, IDH1-mutant pHSCs exhibited reduced proliferation, blocked differentiation, downregulation of MHC class II genes, and reprogramming of oxidative phosphorylation metabolism. Critically, inhibition of oxidative phosphorylation resulted in the complete eradication of IDH1-mutant pHSCs but not IDH2-mutant pHSCs or wild-type HSCs. Our results indicate that IDH1-mutant preleukemic clones can be targeted with complex I inhibitors, offering a potential strategy to prevent the development and relapse of leukemia. SIGNIFICANCE: A high burden of pHSCs is associated with worse overall survival in AML. Using single-cell sequencing, metabolic assessment, and gene-edited human models, we find human pHSCs with IDH1 mutations to be metabolically vulnerable and sensitive to eradication by complex I inhibition. See related commentary by Steensma.

4.
Blood Cancer Discov ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091010

RESUMO

Rare preleukemic hematopoietic stem cells (pHSCs) harboring only the initiating mutations can be detected at the time of AML diagnosis. pHSCs are the origin of leukemia and a potential reservoir for relapse. Using primary human samples and gene-editing to model isocitrate dehydrogenase 1 (IDH1) mutant pHSCs, we show epigenetic, transcriptional, and metabolic differences between pHSCs and healthy hematopoietic stem cells (HSCs). We confirm that IDH1 driven clonal hematopoiesis is associated with cytopenia, suggesting an inherent defect to fully reconstitute hematopoiesis. Despite giving rise to multilineage engraftment, IDH1-mutant pHSCs exhibited reduced proliferation, blocked differentiation, downregulation of MHC Class II genes, and reprogramming of oxidative phosphorylation metabolism. Critically, inhibition of oxidative phosphorylation resulted in complete eradication of IDH1-mutant pHSCs but not IDH2-mutant pHSCs or wildtype HSCs. Our results indicate that IDH1-mutant preleukemic clones can be targeted with complex I inhibitors, offering a potential strategy to prevent development and relapse of leukemia.

5.
Medicina (Kaunas) ; 59(9)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37763812

RESUMO

The association of coeliac disease (CD) in girls with Turner syndrome (TS) is well described. There is, however, a paucity of current research describing TS in patients with known CD. We report two cases of mosaic Turner syndrome diagnosed in girls with CD who failed to achieve expected catch-up growth despite strict adherence to a gluten-free diet (GFD) and the normalisation of TGA-IgA levels. We highlight the need to consider additional diagnoses in patients with CD and ongoing faltering growth. In such patients, referral to a paediatric endocrinologist and relevant investigations, including genetic investigations, should be considered if growth remains suboptimal after one year with a GFD. First-line investigations should include thyroid function, IGF-1, cortisol, gonadotrophins, oestrogen/testosterone, prolactin, karyotype and a bone age X-ray. Clinical suspicion in this situation is key, as an early diagnosis of TS will allow timely treatment with growth hormone, inform discussion around ovarian function and allow screening for important TS associations.

6.
Adv Exp Med Biol ; 1421: 15-35, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37524982

RESUMO

Cadaveric anatomy is frequently described as the gold standard for anatomy education. Increasingly and especially following the COVID-19 pandemic, there is acceptance that a blended approach for anatomy curriculum delivery is optimal for learners.Setting up a new UK Medical School in 2019 necessitated building a new cadaveric anatomy facility. To enable anatomy curriculum delivery during the construction period (2019-2021), a technology-enhanced learning (TEL) anatomy curriculum was developed, as well as an anatomy laboratory suitable for TEL. Development of a TEL anatomy curriculum with the later inclusion of cadaveric anatomy is unusual since the typical model is to supplement cadaveric anatomy with TEL approaches.TEL solutions that provide digital visualisation of anatomy may support learners by reducing cognitive load. Examples include using colour and/or translucency features to highlight and signpost pertinent anatomy and constructing virtual anatomical models in real time, rather than dissection. Radiology and portable ultrasound provide clinically contextualised visualisations of anatomy; the latter offers a haptic learning experience too. A TEL anatomy laboratory can provide interactive learning experiences for engagement and outreach activities for young school children, where cadaveric anatomy is not suitable.


Assuntos
COVID-19 , Educação de Graduação em Medicina , Estudantes de Medicina , Humanos , Pandemias , Currículo , Cadáver , Estudantes de Medicina/psicologia
7.
Nat Commun ; 14(1): 3499, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311746

RESUMO

The availability of thin-film lithium niobate on insulator (LNOI) and advances in processing have led to the emergence of fully integrated LiNbO3 electro-optic devices. Yet to date, LiNbO3 photonic integrated circuits have mostly been fabricated using non-standard etching techniques and partially etched waveguides, that lack the reproducibility achieved in silicon photonics. Widespread application of thin-film LiNbO3 requires a reliable solution with precise lithographic control. Here we demonstrate a heterogeneously integrated LiNbO3 photonic platform employing wafer-scale bonding of thin-film LiNbO3 to silicon nitride (Si3N4) photonic integrated circuits. The platform maintains the low propagation loss (<0.1 dB/cm) and efficient fiber-to-chip coupling (<2.5 dB per facet) of the Si3N4 waveguides and provides a link between passive Si3N4 circuits and electro-optic components with adiabatic mode converters experiencing insertion losses below 0.1 dB. Using this approach we demonstrate several key applications, thus providing a scalable, foundry-ready solution to complex LiNbO3 integrated photonic circuits.

8.
Cancer Discov ; 13(5): 1164-1185, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36856575

RESUMO

Therapeutic cancer vaccination seeks to elicit activation of tumor-reactive T cells capable of recognizing tumor-associated antigens (TAA) and eradicating malignant cells. Here, we present a cancer vaccination approach utilizing myeloid-lineage reprogramming to directly convert cancer cells into tumor-reprogrammed antigen-presenting cells (TR-APC). Using syngeneic murine leukemia models, we demonstrate that TR-APCs acquire both myeloid phenotype and function, process and present endogenous TAAs, and potently stimulate TAA-specific CD4+ and CD8+ T cells. In vivo TR-APC induction elicits clonal expansion of cancer-specific T cells, establishes cancer-specific immune memory, and ultimately promotes leukemia eradication. We further show that both hematologic cancers and solid tumors, including sarcomas and carcinomas, are amenable to myeloid-lineage reprogramming into TR-APCs. Finally, we demonstrate the clinical applicability of this approach by generating TR-APCs from primary clinical specimens and stimulating autologous patient-derived T cells. Thus, TR-APCs represent a cancer vaccination therapeutic strategy with broad implications for clinical immuno-oncology. SIGNIFICANCE: Despite recent advances, the clinical benefit provided by cancer vaccination remains limited. We present a cancer vaccination approach leveraging myeloid-lineage reprogramming of cancer cells into APCs, which subsequently activate anticancer immunity through presentation of self-derived cancer antigens. Both hematologic and solid malignancies derive significant therapeutic benefit from reprogramming-based immunotherapy. This article is highlighted in the In This Issue feature, p. 1027.


Assuntos
Vacinas Anticâncer , Leucemia , Neoplasias , Animais , Camundongos , Células Apresentadoras de Antígenos , Neoplasias/terapia , Antígenos de Neoplasias , Imunoterapia
9.
Cancer Cell ; 41(2): 356-372.e10, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36706760

RESUMO

Despite their cytotoxic capacity, neutrophils are often co-opted by cancers to promote immunosuppression, tumor growth, and metastasis. Consequently, these cells have received little attention as potential cancer immunotherapeutic agents. Here, we demonstrate in mouse models that neutrophils can be harnessed to induce eradication of tumors and reduce metastatic seeding through the combined actions of tumor necrosis factor, CD40 agonist, and tumor-binding antibody. The same combination activates human neutrophils in vitro, enabling their lysis of human tumor cells. Mechanistically, this therapy induces rapid mobilization and tumor infiltration of neutrophils along with complement activation in tumors. Complement component C5a activates neutrophils to produce leukotriene B4, which stimulates reactive oxygen species production via xanthine oxidase, resulting in oxidative damage and T cell-independent clearance of multiple tumor types. These data establish neutrophils as potent anti-tumor immune mediators and define an inflammatory pathway that can be harnessed to drive neutrophil-mediated eradication of cancer.


Assuntos
Antineoplásicos , Neoplasias , Camundongos , Animais , Humanos , Neutrófilos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Leucotrieno B4/metabolismo , Leucotrieno B4/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
10.
Nat Commun ; 13(1): 4764, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35963859

RESUMO

Solitons are shape preserving waveforms that are ubiquitous across nonlinear dynamical systems from BEC to hydrodynamics, and fall into two separate classes: bright solitons existing in anomalous group velocity dispersion, and switching waves forming 'dark solitons' in normal dispersion. Bright solitons in particular have been relevant to chip-scale microresonator frequency combs, used in applications across communications, metrology, and spectroscopy. Both have been studied, yet the existence of a structure between this dichotomy has only been theoretically predicted. We report the observation of dissipative structures embodying a hybrid between switching waves and dissipative solitons, existing in the regime of vanishing group velocity dispersion where third-order dispersion is dominant, hence termed as 'zero-dispersion solitons'. They are observed to arise from the interlocking of two modulated switching waves, forming a stable solitary structure consisting of a quantized number of peaks. The switching waves form directly via synchronous pulse-driving of a Si3N4 microresonator. The resulting comb spectrum spans 136 THz or 97% of an octave, further enhanced by higher-order dispersive wave formation. This dissipative structure expands the domain of Kerr cavity physics to the regime near to zero-dispersion and could present a superior alternative to conventional solitons for broadband comb generation.

11.
Nat Cancer ; 3(8): 976-993, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35817829

RESUMO

Immunotherapy with anti-GD2 antibodies has advanced the treatment of children with high-risk neuroblastoma, but nearly half of patients relapse, and little is known about mechanisms of resistance to anti-GD2 therapy. Here, we show that reduced GD2 expression was significantly correlated with the mesenchymal cell state in neuroblastoma and that a forced adrenergic-to-mesenchymal transition (AMT) conferred downregulation of GD2 and resistance to anti-GD2 antibody. Mechanistically, low-GD2-expressing cell lines demonstrated significantly reduced expression of the ganglioside synthesis enzyme ST8SIA1 (GD3 synthase), resulting in a bottlenecking of GD2 synthesis. Pharmacologic inhibition of EZH2 resulted in epigenetic rewiring of mesenchymal neuroblastoma cells and re-expression of ST8SIA1, restoring surface expression of GD2 and sensitivity to anti-GD2 antibody. These data identify developmental lineage as a key determinant of sensitivity to anti-GD2 based immunotherapies and credential EZH2 inhibitors for clinical testing in combination with anti-GD2 antibody to enhance outcomes for children with neuroblastoma.


Assuntos
Gangliosídeos , Neuroblastoma , Anticorpos Monoclonais , Criança , Humanos , Imunoterapia , Recidiva Local de Neoplasia/induzido quimicamente , Neuroblastoma/tratamento farmacológico
12.
Methods Enzymol ; 667: 575-610, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35525554

RESUMO

Pseudoenzymes resemble active enzymes, but lack key catalytic residues believed to be required for activity. Many pseudoenzymes appear to be inactive in conventional enzyme assays. However, an alternative explanation for their apparent lack of activity is that pseudoenzymes are being assayed for the wrong reaction. We have discovered several new protein kinase-like families which have revealed how different binding orientations of adenosine triphosphate (ATP) and active site residue migration can generate a novel reaction from a common kinase scaffold. These results have exposed the catalytic versatility of the protein kinase fold and suggest that atypical kinases and pseudokinases should be analyzed for alternative transferase activities. In this chapter, we discuss a general approach for bioinformatically identifying divergent or atypical members of an enzyme superfamily, then present an experimental approach to characterize their catalytic activity.


Assuntos
Trifosfato de Adenosina , Proteínas Quinases , Catálise , Domínio Catalítico , Humanos , Proteínas Quinases/química
13.
Br J Neurosurg ; : 1-3, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35445610

RESUMO

INTRODUCTION: Mental nerve stimulation is recognised as a treatment option for neuropathic facial pain. Historically however, lead migration across the mobile temporomandibular joint has prevented this procedures utility. METHODS: We describe a new method of insertion and anchoring of a mental nerve stimulator for the management of refractory neuropathic pain in the distribution of the mental nerve. We anchored the stimulator lead to the mandibular body. RESULTS: Significant analgesic effect was achieved and no lead migration had occurred at 1 year post-operatively. CONCLUSIONS: This report describes in detail the procedure of mental nerve stimulator insertion, with a novel technique of mandibular anchoring of the lead.

14.
Nat Commun ; 13(1): 1771, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365647

RESUMO

The past decade has witnessed major advances in the development and system-level applications of photonic integrated microcombs, that are coherent, broadband optical frequency combs with repetition rates in the millimeter-wave to terahertz domain. Most of these advances are based on harnessing of dissipative Kerr solitons (DKS) in microresonators with anomalous group velocity dispersion (GVD). However, microcombs can also be generated with normal GVD using localized structures that are referred to as dark pulses, switching waves or platicons. Compared with DKS microcombs that require specific designs and fabrication techniques for dispersion engineering, platicon microcombs can be readily built using CMOS-compatible platforms such as thin-film (i.e., thickness below 300 nm) silicon nitride with normal GVD. Here, we use laser self-injection locking to demonstrate a fully integrated platicon microcomb operating at a microwave K-band repetition rate. A distributed feedback (DFB) laser edge-coupled to a Si3N4 chip is self-injection-locked to a high-Q ( > 107) microresonator with high confinement waveguides, and directly excites platicons without sophisticated active control. We demonstrate multi-platicon states and switching, perform optical feedback phase study and characterize the phase noise of the K-band platicon repetition rate and the pump laser. Laser self-injection-locked platicons could facilitate the wide adoption of microcombs as a building block in photonic integrated circuits via commercial foundry service.

15.
Nat Med ; 28(2): 333-344, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35027753

RESUMO

The disialoganglioside GD2 is overexpressed on several solid tumors, and monoclonal antibodies targeting GD2 have substantially improved outcomes for children with high-risk neuroblastoma. However, approximately 40% of patients with neuroblastoma still relapse, and anti-GD2 has not mediated significant clinical activity in any other GD2+ malignancy. Macrophages are important mediators of anti-tumor immunity, but tumors resist macrophage phagocytosis through expression of the checkpoint molecule CD47, a so-called 'Don't eat me' signal. In this study, we establish potent synergy for the combination of anti-GD2 and anti-CD47 in syngeneic and xenograft mouse models of neuroblastoma, where the combination eradicates tumors, as well as osteosarcoma and small-cell lung cancer, where the combination significantly reduces tumor burden and extends survival. This synergy is driven by two GD2-specific factors that reorient the balance of macrophage activity. Ligation of GD2 on tumor cells (a) causes upregulation of surface calreticulin, a pro-phagocytic 'Eat me' signal that primes cells for removal and (b) interrupts the interaction of GD2 with its newly identified ligand, the inhibitory immunoreceptor Siglec-7. This work credentials the combination of anti-GD2 and anti-CD47 for clinical translation and suggests that CD47 blockade will be most efficacious in combination with monoclonal antibodies that alter additional pro- and anti-phagocytic signals within the tumor microenvironment.


Assuntos
Neoplasias Ósseas , Antígeno CD47 , Animais , Linhagem Celular Tumoral , Humanos , Imunoterapia , Camundongos , Recidiva Local de Neoplasia , Fagocitose , Microambiente Tumoral
16.
Angew Chem Int Ed Engl ; 61(11): e202114619, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-34856043

RESUMO

Since early 2020, scientists have strived to find an effective solution to fight SARS-CoV-2, in particular by developing reliable vaccines that inhibit the spread of the disease and repurposing drugs for combatting its effects on the human body. The antiviral prodrug Remdesivir is still the most widely used therapeutic during the early stages of the infection. However, the current synthetic routes rely on the use of protecting groups, air-sensitive reagents, and cryogenic conditions, thus impeding a cost-efficient supply to patients. We have, therefore, focused on the development of a straightforward, direct addition of (hetero)arenes to unprotected sugars. Here we report a silylium-catalyzed and completely stereoselective C-glycosylation that initially yields the open-chain polyols, which can be selectively cyclized to provide either the kinetic α-furanose or the thermodynamically favored ß-anomer. The method significantly expedites the synthesis of Remdesivir precursor GS-441524 after a subsequent Mn-catalyzed C-H oxidation and deoxycyanation.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/síntese química , Nucleosídeos/síntese química , Adenosina/síntese química , Adenosina/química , Monofosfato de Adenosina/síntese química , Monofosfato de Adenosina/química , Alanina/síntese química , Alanina/química , Antivirais/química , Catálise , Técnicas de Química Sintética/economia , Técnicas de Química Sintética/métodos , Ciclização , Glicosilação , Humanos , Modelos Moleculares , Nucleosídeos/química , Estereoisomerismo , Fatores de Tempo , Tratamento Farmacológico da COVID-19
17.
Angew Chem Int Ed Engl ; 61(9): e202115036, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-34897932

RESUMO

Strong and confined imidodiphosphorimidate (IDPi) catalysts enable highly enantioselective substitutions of cyclic, aliphatic hemiaminal ethers with enol silanes. 2-Substituted pyrrolidines, piperidines, and azepanes are obtained with high enantioselectivities, and the method displays a broad tolerance of various enol silane nucleophiles. Several natural products can be accessed using this methodology. Mechanistic studies support the intermediacy of non-stabilized, cyclic N-(exo-acyl)iminium ions, paired with the confined chiral counteranion. Computational studies suggest transition states that explain the observed enantioselectivity.

18.
Mol Cell ; 81(21): 4527-4539.e8, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34407442

RESUMO

The kinase domain transfers phosphate from ATP to substrates. However, the Legionella effector SidJ adopts a kinase fold, yet catalyzes calmodulin (CaM)-dependent glutamylation to inactivate the SidE ubiquitin ligases. The structural and mechanistic basis in which the kinase domain catalyzes protein glutamylation is unknown. Here we present cryo-EM reconstructions of SidJ:CaM:SidE reaction intermediate complexes. We show that the kinase-like active site of SidJ adenylates an active-site Glu in SidE, resulting in the formation of a stable reaction intermediate complex. An insertion in the catalytic loop of the kinase domain positions the donor Glu near the acyl-adenylate for peptide bond formation. Our structural analysis led us to discover that the SidJ paralog SdjA is a glutamylase that differentially regulates the SidE ligases during Legionella infection. Our results uncover the structural and mechanistic basis in which the kinase fold catalyzes non-ribosomal amino acid ligations and reveal an unappreciated level of SidE-family regulation.


Assuntos
Proteínas de Bactérias/química , Dobramento de Proteína , Proteínas/química , Fatores de Virulência/química , Proteínas de Bactérias/metabolismo , Calmodulina/química , Catálise , Domínio Catalítico , Microscopia Crioeletrônica , Legionella/enzimologia , Mutagênese , Peptídeos/química , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Espectrometria de Fluorescência , Ubiquitina-Proteína Ligases/química , Fatores de Virulência/metabolismo
19.
Science ; 372(6545): 935-941, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33927055

RESUMO

During infection, intracellular bacterial pathogens translocate a variety of effectors into host cells that modify host membrane trafficking for their benefit. We found a self-organizing system consisting of a bacterial phosphoinositide kinase and its opposing phosphatase that formed spatiotemporal patterns, including traveling waves, to remodel host cellular membranes. The Legionella effector MavQ, a phosphatidylinositol (PI) 3-kinase, was targeted to the endoplasmic reticulum (ER). MavQ and the Legionella PI 3-phosphatase SidP, even in the absence of other bacterial components, drove rapid PI 3-phosphate turnover on the ER and spontaneously formed traveling waves that spread along ER subdomains inducing vesicle and tubule budding. Thus, bacteria can exploit a self-organizing membrane-targeting mechanism to hijack host cellular structures for survival.


Assuntos
Proteínas de Bactérias/metabolismo , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Legionella pneumophila/fisiologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animais , Proteínas de Bactérias/química , Células COS , Chlorocebus aethiops , Retículo Endoplasmático/ultraestrutura , Retroalimentação Fisiológica , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Membranas Intracelulares/ultraestrutura , Legionella pneumophila/enzimologia , Legionella pneumophila/genética , Legionella pneumophila/crescimento & desenvolvimento , Camundongos , Mutação , Fosfatidilinositol 3-Quinase/química , Fosfatos de Fosfatidilinositol/química , Monoéster Fosfórico Hidrolases/metabolismo , Domínios Proteicos , Células RAW 264.7
20.
Front Immunol ; 12: 624284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717133

RESUMO

Natural killer (NK) cells are effector cells of the innate immune system involved in defense against virus-infected and transformed cells. The effector function of NK cells is linked to their ability to migrate to sites of inflammation or damage. Therefore, understanding the factors regulating NK cell migration is of substantial interest. Here, we show that in the absence of aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, NK cells have reduced capacity to migrate and infiltrate tumors in vivo. Analysis of differentially expressed genes revealed that ankyrin repeat and SOCS Box containing 2 (Asb2) expression was dramatically decreased in Ahr-/- NK cells and that AhR ligands modulated its expression. Further, AhR directly regulated the promoter region of the Asb2 gene. Similar to what was observed with murine Ahr-/- NK cells, ASB2 knockdown inhibited the migration of human NK cells. Activation of AHR by its agonist FICZ induced ASB2-dependent filamin A degradation in NK cells; conversely, knockdown of endogenous ASB2 inhibited filamin A degradation. Reduction of filamin A increased the migration of primary NK cells and restored the invasion capacity of AHR-deficient NK cells. Our study introduces AHR as a new regulator of NK cell migration, through an AHR-ASB2-filamin A axis and provides insight into a potential therapeutic target for NK cell-based immunotherapies.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Movimento Celular , Filaminas/metabolismo , Células Matadoras Naturais/enzimologia , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular Tumoral , Humanos , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/enzimologia , Linfócitos do Interstício Tumoral/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Bucais/imunologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Proteínas Supressoras da Sinalização de Citocina/genética , Microambiente Tumoral , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA