Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 222: 66-75, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29802987

RESUMO

Oil and gas development is changing the landscape in many regions of the United States and globally. However, the nature, extent, and magnitude of landscape change and development, and precisely how this development compares to other ongoing land conversion (e.g. urban/sub-urban development, timber harvest) is not well understood. In this study, we examine land conversion from oil and gas infrastructure development in the upper Susquehanna River basin in Pennsylvania and New York, an area that has experienced much oil and gas development over the past 10 years. We quantified land conversion in terms of forest canopy geometric volume loss in contrast to previous studies that considered only areal impacts. For the first time in a study of this type, we use fine-scale lidar forest canopy geometric models to assess the volumetric change due to forest clearing from oil and gas development and contrast this land change to clear cut forest harvesting, and urban and suburban development. Results show that oil and gas infrastructure development removed a large volume of forest canopy from 2006 to 2013, and this removal spread over a large portion of the study area. Timber operations (clear cutting) on Pennsylvania State Forest lands removed a larger total volume of forest canopy during the same time period, but this canopy removal was concentrated in a smaller area. Results of our study point to the need to consider volumetric impacts of oil and gas development on ecosystems, and to place potential impacts in context with other ongoing land conversions.


Assuntos
Ecossistema , Florestas , Campos de Petróleo e Gás , Agricultura Florestal , New York , Pennsylvania , Rios
2.
Sci Total Environ ; 628-629: 338-349, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29444486

RESUMO

We conducted a large-scale assessment of unconventional oil and gas (UOG) development effects on brook trout (Salvelinus fontinalis) distribution. We compiled 2231 brook trout collection records from the Upper Susquehanna River Watershed, USA. We used boosted regression tree (BRT) analysis to predict occurrence probability at the 1:24,000 stream-segment scale as a function of natural and anthropogenic landscape and climatic attributes. We then evaluated the importance of landscape context (i.e., pre-existing natural habitat quality and anthropogenic degradation) in modulating the effects of UOG on brook trout distribution under UOG development scenarios. BRT made use of 5 anthropogenic (28% relative influence) and 7 natural (72% relative influence) variables to model occurrence with a high degree of accuracy [Area Under the Receiver Operating Curve (AUC)=0.85 and cross-validated AUC=0.81]. UOG development impacted 11% (n=2784) of streams and resulted in a loss of predicted occurrence in 126 (4%). Most streams impacted by UOG had unsuitable underlying natural habitat quality (n=1220; 44%). Brook trout were predicted to be absent from an additional 26% (n=733) of streams due to pre-existing non-UOG land uses (i.e., agriculture, residential and commercial development, or historic mining). Streams with a predicted and observed (via existing pre- and post-disturbance fish sampling records) loss of occurrence due to UOG tended to have intermediate natural habitat quality and/or intermediate levels of non-UOG stress. Simulated development of permitted but undeveloped UOG wells (n=943) resulted in a loss of predicted occurrence in 27 additional streams. Loss of occurrence was strongly dependent upon landscape context, suggesting effects of current and future UOG development are likely most relevant in streams near the probability threshold due to pre-existing habitat degradation.


Assuntos
Ecossistema , Monitoramento Ambiental , Campos de Petróleo e Gás , Truta/fisiologia , Animais , Rios
3.
Sci Total Environ ; 610-611: 154-166, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28803193

RESUMO

The development of unconventional oil and gas (UOG) involves infrastructure development (well pads, roads and pipelines), well drilling and stimulation (hydraulic fracturing), and production; all of which have the potential to affect stream ecosystems. Here, we developed a fine-scaled (1:24,000) catchment-level disturbance intensity index (DII) that included 17 measures of UOG capturing all steps in the development process (infrastructure, water withdrawals, probabilistic spills) that could affect headwater streams (<200km2 in upstream catchment) in the Upper Susquehanna River Basin in Pennsylvania, U.S.A. The DII ranged from 0 (no UOG disturbance) to 100 (the catchment with the highest UOG disturbance in the study area) and it was most sensitive to removal of pipeline cover, road cover and well pad cover metrics. We related this DII to three measures of high quality streams: Pennsylvania State Exceptional Value (EV) streams, Class A brook trout streams and Eastern Brook Trout Joint Venture brook trout patches. Overall only 3.8% of all catchments and 2.7% of EV stream length, 1.9% of Class A streams and 1.2% of patches were classified as having medium to high level DII scores (>50). Well density, often used as a proxy for development, only correlated strongly with well pad coverage and produced materials, and therefore may miss potential effects associated with roads and pipelines, water withdrawals and spills. When analyzed with a future development scenario, 91.1% of EV stream length, 68.7% of Class A streams and 80.0% of patches were in catchments with a moderate to high probability of development. Our method incorporated the cumulative effects of UOG on streams and can be used to identify catchments and reaches at risk to existing stressors or future development.

4.
Am J Trop Med Hyg ; 88(5): 986-96, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23478575

RESUMO

A study of West Nile virus (WNV) ecology was conducted in St. Tammany Parish, Louisiana, from 2002 to 2004. Mosquitoes were collected weekly throughout the year using Centers for Disease Control and Prevention (CDC) light traps placed at 1.5 and 6 m above the ground and gravid traps. A total of 379,466 mosquitoes was collected. WNV was identified in 32 pools of mosquitoes comprising four species; 23 positive pools were from Culex nigripalpus collected during 2003. Significantly more positive pools were obtained from Cx. nigripalpus collected in traps placed at 6 m than 1.5 m that year, but abundance did not differ by trap height. In contrast, Cx. nigripalpus abundance was significantly greater in traps placed at 6 m in 2002 and 2004. Annual temporal variation in Cx. nigripalpus peak seasonal abundance has important implications for WNV transmission in Louisiana. One WNV-positive pool, from Cx. erraticus, was collected during the winter of 2004, showing year-round transmission. The potential roles of additional mosquito species in WNV transmission in southeastern Louisiana are discussed.


Assuntos
Culex/fisiologia , Insetos Vetores/fisiologia , Febre do Nilo Ocidental/transmissão , Animais , Culex/classificação , Insetos Vetores/classificação , Louisiana , Controle de Mosquitos/instrumentação , Controle de Mosquitos/métodos , Estações do Ano , Especificidade da Espécie , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental
5.
Vector Borne Zoonotic Dis ; 7(2): 173-80, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17627435

RESUMO

Identifying links between environmental variables and infectious disease risk is essential to understanding how human-induced environmental changes will effect the dynamics of human and wildlife diseases. Although land cover change has often been tied to spatial variation in disease occurrence, the underlying factors driving the correlations are often unknown, limiting the applicability of these results for disease prevention and control. In this study, we described associations between land cover composition and West Nile virus (WNV) infection prevalence, and investigated three potential processes accounting for observed patterns: (1) variation in vector density; (2) variation in amplification host abundance; and (3) variation in host community composition. Interestingly, we found that WNV infection rates among Culex mosquitoes declined with increasing wetland cover, but wetland area was not significantly associated with either vector density or amplification host abundance. By contrast, wetland area was strongly correlated with host community composition, and model comparisons suggested that this factor accounted, at least partially, for the observed effect of wetland area on WNV infection risk. Our results suggest that preserving large wetland areas, and by extension, intact wetland bird communities, may represent a valuable ecosystem-based approach for controlling WNV outbreaks.


Assuntos
Culex/crescimento & desenvolvimento , Culex/virologia , Meio Ambiente , Febre do Nilo Ocidental/epidemiologia , Vírus do Nilo Ocidental/isolamento & purificação , Animais , Aves/virologia , Geografia , Humanos , Insetos Vetores/crescimento & desenvolvimento , Insetos Vetores/virologia , Funções Verossimilhança , Densidade Demográfica , Dinâmica Populacional , Fatores de Risco , Especificidade da Espécie , Febre do Nilo Ocidental/transmissão , Febre do Nilo Ocidental/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...