Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(1): e1011793, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38232122

RESUMO

Electrophysiological recordings from freely behaving animals are a widespread and powerful mode of investigation in sleep research. These recordings generate large amounts of data that require sleep stage annotation (polysomnography), in which the data is parcellated according to three vigilance states: awake, rapid eye movement (REM) sleep, and non-REM (NREM) sleep. Manual and current computational annotation methods ignore intermediate states because the classification features become ambiguous, even though intermediate states contain important information regarding vigilance state dynamics. To address this problem, we have developed "Somnotate"-a probabilistic classifier based on a combination of linear discriminant analysis (LDA) with a hidden Markov model (HMM). First we demonstrate that Somnotate sets new standards in polysomnography, exhibiting annotation accuracies that exceed human experts on mouse electrophysiological data, remarkable robustness to errors in the training data, compatibility with different recording configurations, and an ability to maintain high accuracy during experimental interventions. However, the key feature of Somnotate is that it quantifies and reports the certainty of its annotations. We leverage this feature to reveal that many intermediate vigilance states cluster around state transitions, whereas others correspond to failed attempts to transition. This enables us to show for the first time that the success rates of different types of transition are differentially affected by experimental manipulations and can explain previously observed sleep patterns. Somnotate is open-source and has the potential to both facilitate the study of sleep stage transitions and offer new insights into the mechanisms underlying sleep-wake dynamics.


Assuntos
Fases do Sono , Vigília , Humanos , Camundongos , Animais , Vigília/fisiologia , Fases do Sono/fisiologia , Sono/fisiologia , Sono REM/fisiologia , Polissonografia/métodos , Eletroencefalografia/métodos
2.
Brain Commun ; 4(3): fcac089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620170

RESUMO

Sensory disconnection from the environment is a hallmark of sleep and is crucial for sleep maintenance. It remains unclear, however, whether internally generated percepts-phantom percepts-may overcome such disconnection and, in turn, how sleep and its effect on sensory processing and brain plasticity may affect the function of the specific neural networks underlying such phenomena. A major hurdle in addressing this relationship is the methodological difficulty to study sensory phantoms, due to their subjective nature and lack of control over the parameters or neural activity underlying that percept. Here, we explore the most prevalent phantom percept, subjective tinnitus-or tinnitus for short-as a model to investigate this. Tinnitus is the permanent perception of a sound with no identifiable corresponding acoustic source. This review offers a novel perspective on the functional interaction between brain activity across the sleep-wake cycle and tinnitus. We discuss characteristic features of brain activity during tinnitus in the awake and the sleeping brain and explore its effect on sleep functions and homeostasis. We ask whether local changes in cortical activity in tinnitus may overcome sensory disconnection and prevent the occurrence of global restorative sleep and, in turn, how accumulating sleep pressure may temporarily alleviate the persistence of a phantom sound. Beyond an acute interaction between sleep and neural activity, we discuss how the effects of sleep on brain plasticity may contribute to aberrant neural circuit activity and promote tinnitus consolidation. Tinnitus represents a unique window into understanding the role of sleep in sensory processing. Clarification of the underlying relationship may offer novel insights into therapeutic interventions in tinnitus management.

3.
Sci Rep ; 12(1): 6051, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410339

RESUMO

Sleep is essential but places animals at risk. Filtering acoustic information according to its relevance, a process generally known as sensory gating, is crucial during sleep to ensure a balance between rest and danger detection. The mechanisms of this sensory gating and its specificity are not understood. Here, we tested the effect that sounds of different meaning have on sleep-associated ongoing oscillations. We recorded EEG and EMG from mice during REM and NREM sleep while presenting sounds with or without behavioural relevance. We found that sound presentation per se, in the form of a neutral sound, elicited a weak or no change in the power of sleep-state-dependent EEG during REM and NREM sleep. In contrast, the presentation of a sound previously conditioned in an aversive task, elicited a clear and fast decrease in the EEG power during both sleep phases, suggesting a transition to lighter sleep without awakening. The observed changes generally weakened over training days and were not present in animals that failed to learn. Interestingly, the effect could be generalized to unfamiliar neutral sounds if presented following conditioned training, an effect that depended on sleep phase and sound type. The data demonstrate that sounds are differentially gated during sleep depending on their meaning and that this process is reflected in disruption of sleep-associated brain oscillations without behavioural arousal.


Assuntos
Roedores , Sono REM , Animais , Encéfalo , Eletroencefalografia , Camundongos , Sono , Fases do Sono
4.
BMC Biol ; 19(1): 65, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823872

RESUMO

BACKGROUND: Homeostatic regulation of sleep is reflected in the maintenance of a daily balance between sleep and wakefulness. Although numerous internal and external factors can influence sleep, it is unclear whether and to what extent the process that keeps track of time spent awake is determined by the content of the waking experience. We hypothesised that alterations in environmental conditions may elicit different types of wakefulness, which will in turn influence both the capacity to sustain continuous wakefulness as well as the rates of accumulating sleep pressure. To address this, we compared the effects of repetitive behaviours such as voluntary wheel running or performing a simple touchscreen task, with wakefulness dominated by novel object exploration, on sleep timing and EEG slow-wave activity (SWA) during subsequent NREM sleep. RESULTS: We find that voluntary wheel running is associated with higher wake EEG theta-frequency activity and results in longer wake episodes, as compared with exploratory behaviour; yet, it does not lead to higher levels of EEG SWA during subsequent NREM sleep in either the frontal or occipital derivation. Furthermore, engagement in a touchscreen task, motivated by food reward, results in lower SWA during subsequent NREM sleep in both derivations, as compared to exploratory wakefulness, even though the total duration of wakefulness is similar. CONCLUSION: Overall, our study suggests that sleep-wake behaviour is highly flexible within an individual and that the homeostatic processes that keep track of time spent awake are sensitive to the nature of the waking experience. We therefore conclude that sleep dynamics are determined, to a large degree, by the interaction between the organism and the environment.


Assuntos
Comportamento Exploratório , Camundongos/fisiologia , Atividade Motora , Corrida , Sono/fisiologia , Vigília , Animais , Masculino , Camundongos Endogâmicos C57BL , Sono de Ondas Lentas/fisiologia
5.
Biochem Pharmacol ; 191: 114515, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33713641

RESUMO

GABA-ergic neurotransmission plays a key role in sleep regulatory mechanisms and in brain oscillations during sleep. Benzodiazepines such as diazepam are known to induce sedation and promote sleep, however, EEG spectral power in slow frequencies is typically reduced after the administration of benzodiazepines or similar compounds. EEG slow waves arise from a synchronous alternation between periods of cortical network activity (ON) and silence (OFF), and represent a sensitive marker of preceding sleep-wake history. Yet it remains unclear how benzodiazepines act on cortical neural activity during sleep. To address this, we obtained chronic recordings of local field potentials and multiunit activity (MUA) from deep cortical layers of the primary motor cortex in freely behaving mice after diazepam injection. We found that the amplitude of individual LFP slow waves was significantly reduced after diazepam injection and was accompanied by a lower incidence and duration of the corresponding neuronal OFF periods. Further investigation suggested that this is due to a disruption in the synchronisation of cortical neurons. Our data suggest that the state of global sleep and local cortical synchrony can be dissociated, and that the brain state induced by benzodiazepines is qualitatively different from spontaneous physiological sleep.


Assuntos
Diazepam/administração & dosagem , Hipnóticos e Sedativos/administração & dosagem , Córtex Motor/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Sono/efeitos dos fármacos , Vigília/efeitos dos fármacos , Animais , Estudos Cross-Over , Eletroencefalografia/efeitos dos fármacos , Eletroencefalografia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Motor/fisiologia , Rede Nervosa/fisiologia , Distribuição Aleatória , Sono/fisiologia , Vigília/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...