Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36676379

RESUMO

The main focus of this research was the bio-stimulated healing of cracks in lime mortar samples (historical and newly designed). The investigation started from comprehensive characterisation of historical mortars, while in the next stage a compatible conservation mortar was designed and characterised, with special attention given to the contact zone formation between original and conservation mortars. The next step was the design of a bio-stimulating crack-sealing agent, a two-component liquid system: bacteria culture Sporosarcina pasteurii DSM 33 and nutrients. Both historical and conservation mortar samples were used in order to study their potentials for bio-stimulated surface-crack repair. The experiment lasted for 150 days, allowing the ureolytic bacteria Sporosarcina pasteurii DSM 33 to induce the precipitation of calcium carbonate into cracks and heal the damaged surface of the tested materials. The healing phenomenon was continuously monitored during a period of 150 days. Special attention was given to the evaluation of the morphology, chemical and structural characteristics of the deposits created in/on the surface cracks, monitored by optical microscopy, SEM, XRF and XRD analyses. The obtained results present valuable input for the application of the developed system in real environmental conditions as a solution for the future sustainable architectural conservation of traditionally prepared mortars.

2.
J Radiol Prot ; 42(4)2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36541479

RESUMO

In this work, the radon emanation coefficients for selected building materials that are most often used in Serbia for covering floor surfaces (concrete, concrete screed, granite, glazed ceramic tiles, marble, roofing tile, and terrazzo tile) were determined, and the influence of the material structure on their values. The concentration of226Ra activity in the samples was determined using the gamma spectrometry method. Radon emanation was measured with the RAD7 device. The porosity of the samples was tested using mercury intrusion porosimetry and water absorption methods, and the structural analysis was performed using x-ray diffraction analysis and x-ray fluorescence analysis. The measured values of226Ra activity concentrations were in the range (4.93-298) Bq kg-1, and the estimated values of the radon emanation coefficients were in the range (0.55-6.05) %. The obtained results indicate that the chemical and mineralogical composition, method of production, and the226Ra activity concentration have an influence on the emanation of radon from the material. No significant correlation was found between the radon emanation coefficient and the open porosity of the material, most likely due to the inhomogeneous presence of pores of different dimensions in the materials. It was established that the total value of the emanation coefficient depends on the emanation coefficient for pores ⩽100µm in size.


Assuntos
Monitoramento de Radiação , Radônio , Poluentes Radioativos do Solo , Radônio/análise , Materiais de Construção/análise , Poluentes Radioativos do Solo/análise , Água/análise
3.
J Hazard Mater ; 413: 125343, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33621775

RESUMO

In this paper, phosphogypsum (PG) with the content of 226Ra of about 500 Bq kg-1 was used as a clay additive in mass ratios of (0-40) % and its influence on the radiological and mineralogical characteristics of the obtained brick samples was monitored. After sintering the samples at 1000 â„ƒ, the formation of the mineral phase gehlenite was observed, and its share increased with the share of PG in the samples. The Monte Carlo method was used to determine the gamma dose rates, and consequently annual effective dose, for a standard room, with dimensions 4 × 5 × 2.8 m, whose walls were built of brick with PG. The obtained values were in the range (0.22-0.35) mSv y-1. In addition, the active device RAD7 was used to determine the radon surface exhalation rates from the samples, which were found to be in the range (63-150) mBq m-2 h-1. The estimated indoor radon concentrations were found to be drastically lower than 100 Bq m-3, leading to low radon inhalation doses. However, estimated annual effective doses from external gamma exposure were found not to be insignificant.

4.
Nanomaterials (Basel) ; 10(8)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823509

RESUMO

Nowadays, great focus is given to the contamination of surface and groundwater because of the extensive usage of pesticides in agriculture. The improvements of commercial catalyst TiO2 activity using different Au nanoparticles were investigated for mesotrione photocatalytic degradation under simulated sunlight. The selected system was 2.43 × 10-3% Au-S-CH2-CH2-OH/TiO2 (0.5 g/L) that was studied by transmission electron microscopy and ultraviolet-visible (UV-Vis) spectroscopy. It was found that TiO2 particles size was ~20 nm and ~50 nm, respectively. The Au nanoparticles were below 10 nm and were well distributed within the framework of TiO2. For 2.43 × 10-3% Au-S-CH2-CH2-OH/TiO2 (0.5 g/L), band gap energy was 2.45 eV. In comparison to the pure TiO2, addition of Au nanoparticles generally enhanced photocatalytic removal of mesotrione. By examining the degree of mineralization, it was found that 2.43 × 10-3% Au-S-CH2-CH2-OH/TiO2 (0.5 g/L) system was the most efficient for the removal of the mesotrione and intermediates. The effect of tert-butanol, NaF and ethylenediaminetetraacetic acid disodium salt on the transformation rate suggested that the relative contribution of various reactive species changed in following order: h+ > ●OHads > ●OHbulk. Finally, several intermediates that were formed during the photocatalytic treatment of mesotrione were identified.

5.
Beilstein J Nanotechnol ; 9: 1629-1640, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977697

RESUMO

Titanium dioxide photocatalysts have received a lot of attention during the past decades due to their ability to degrade various organic pollutants to CO2 and H2O, which makes them suitable for use in environmental related fields such as air and water treatment and self-cleaning surfaces. In this work, titania thin films and powders were prepared by a particulate sol-gel route, using titanium tetrachloride (TiCl4) as a precursor. Afterwards, the prepared sols were doped with nitrogen (ammonium nitrate, urea), sulfur (thiourea) and platinum (chloroplatinic acid), coated onto glass substrates by dip-coating, and thermally treated in a muffle furnace to promote crystallization. The resulting thin films were then characterized by various techniques (i.e., TGA-DSC-MS, XRD, BET, XPS, SEM, band gap measurements). The photocatalytic activity of the prepared thin films was determined by measuring the degradation rate of plasmocorinth B (PB), an organic pigment used in the textile industry, which can pose an environmental risk when expelled into wastewater. A kinetic model for adsorption and subsequent degradation was used to fit the experimental data. The results have shown an increase in photocatalytic activity under visible-light illumination of nonmetal and metal doped and co-doped titania thin films compared to an undoped sample.

6.
Chemosphere ; 196: 145-152, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29294428

RESUMO

The surface modification of commercial TiO2 Hombikat (TiO2) using nanoparticles of fullerene C60 with tetrahydrofuran (THF-nC60), as well as fullerenol C60(OH)24 nanoparticles (FNP) was investigated in this study. Characterization of THF-nC60, FNP, TiO2, TiO2/THF-nC60, and TiO2/FNP was studied by using DES, ELS, TEM, SEM, DRS and BET measurements and their photoactivity has been examined on the mesotrione degradation under simulated sunlight. It was found that FNP in self-assembled nanocomposite TiO2/FNP increased negatively charge, as well as catalytic surface of TiO2. In addition, TiO2/FNP exhibits a shift of band gap energy to lower values compared to TiO2 and TiO2/THF-nC60. BET surface area has not showed significant differences among catalysts. Furthermore, it was found that the highest photoactivity was obtained for TiO2/FNP system. Besides, influence of different concentrations of electron acceptors (H2O2 and KBrO3), as well as scavengers on the kinetics of mesotrione removal in aqueous solution with/without TiO2 and FNP under simulated sunlight was investigated. Namely, addition of mentioned electron acceptors has resulted in higher mesotrione degradation efficiency compared to O2 alone. Besides, in the first period substrate degradation probably takes place via hydroxyl radicals and after 60 min of irradiation the reaction mechanism proceeds mainly via holes. The most efficient system for mesotrione degradation and mineralization were TiO2/7 mM KBrO3 and TiO2/7 mM KBrO3/40 µl FNP, respectively.


Assuntos
Cicloexanonas/metabolismo , Recuperação e Remediação Ambiental/métodos , Fulerenos/química , Herbicidas/metabolismo , Nanocompostos/química , Titânio/química , Catálise , Luz Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...