Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Prod Res ; : 1-15, 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37661754

RESUMO

Fungi have a unique metabolic plasticity allowing them to produce a wide range of natural products. Since the discovery of penicillin, an antibiotic of fungal origin, substantial efforts have been devoted globally to search for fungal-derived natural bioactive products. Andean region forests represent one of the few undisturbed ecosystems in the world with little human intervention. While these forests display a rich biological diversity, mycological and chemical studies in these environments have been scarce. This review aims to summarise all the efforts regarding the chemical or bioactivity analyses of Agaricomycetes (Basidiomycota) from southern South America environments. Overall, herein we report a total of 147 fungal species, 21 of them showing chemical characterisation and/or biological activity. In terms of chemical cores, furans, chlorinated phenol derivatives, polyenes, lactones, terpenes and himanimides have been reported. These natural products displayed a range of biological activities including antioxidant, antimicrobial, antifungal, neuroprotective and osteoclast-forming suppressing effects.

2.
J Alzheimers Dis ; 94(s1): S97-S108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36463456

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive impairment and memory loss. One of the hallmarks in AD is amyloid-ß peptide (Aß) accumulation, where the soluble oligomers of Aß (AßOs) are the most toxic species, deteriorating the synaptic function, membrane integrity, and neuronal structures, which ultimately lead to apoptosis. Currently, there are no drugs to arrest AD progression, and current scientific efforts are focused on searching for novel leads to control this disease. Lignans are compounds extracted from conifers and have several medicinal properties. Eudesmin (Eu) is an extractable lignan from the wood of Araucaria araucana, a native tree from Chile. This metabolite has shown a range of biological properties, including the ability to control inflammation and antibacterial effects. OBJECTIVE: In this study, the neuroprotective abilities of Eu on synaptic failure induced by AßOs were analyzed. METHODS: Using neuronal models, PC12 cells, and in silico simulations we evaluated the neuroprotective effect of Eu (30 nM) against the toxicity induced by AßOs. RESULTS: In primary cultures from mouse hippocampus, Eu preserved the synaptic structure against AßOs toxicity, maintaining stable levels of the presynaptic protein SV2 at the same concentration. Eu also averted synapsis failure from the AßOs toxicity by sustaining the frequencies of cytosolic Ca2+ transients. Finally, we found that Eu (30 nM) interacts with the Aß aggregation process inducing a decrease in AßOs toxicity, suggesting an alternative mechanism to explain the neuroprotective activity of Eu. CONCLUSION: We believe that Eu represents a novel lead that reduces the Aß toxicity, opening new research venues for lignans as neuroprotective agents.


Assuntos
Doença de Alzheimer , Lignanas , Fármacos Neuroprotetores , Ratos , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Lignanas/farmacologia , Células PC12 , Fármacos Neuroprotetores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...