Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 218(11): 3548-3559, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31597679

RESUMO

Tropomyosin is a coiled-coil actin binding protein key to the stability of actin filaments. In muscle cells, tropomyosin is subject to calcium regulation, but its regulation in nonmuscle cells is not understood. Here, we provide evidence that the fission yeast tropomyosin, Cdc8, is regulated by phosphorylation of a serine residue. Failure of phosphorylation leads to an increased number and stability of actin cables and causes misplacement of the division site in certain genetic backgrounds. Phosphorylation of Cdc8 weakens its interaction with actin filaments. Furthermore, we show through in vitro reconstitution that phosphorylation-mediated release of Cdc8 from actin filaments facilitates access of the actin-severing protein Adf1 and subsequent filament disassembly. These studies establish that phosphorylation may be a key mode of regulation of nonmuscle tropomyosins, which in fission yeast controls actin filament stability and division site placement.


Assuntos
Actinas/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Tropomiosina/metabolismo , Fosforilação
2.
Curr Biol ; 28(17): R929-R930, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30205061

RESUMO

Error-free chromosome segregation during mitosis depends on a functional spindle assembly checkpoint (SAC). The SAC is a multi-component signalling system that is recruited to unattached or incorrectly attached kinetochores to catalyse the formation of a soluble inhibitor, known as the Mitotic Checkpoint Complex (MCC), which binds and inhibits the anaphase promoting complex (APC/C) [1]. We have previously proposed that two separable pathways, composed of KNL1-Bub3-Bub1 (KBB) and Rod-Zwilch-Zw10 (RZZ), recruit Mad1-Mad2 complexes to human kinetochores to activate the SAC [2]. Although Bub1 is absolutely required for checkpoint signalling in yeast (which lack RZZ), there is conflicting evidence as to whether this is the case in human cells based on siRNA studies [2-5]. Here we show that, while Bub1 is required for recruitment of BubR1, it is not strictly required for the checkpoint response to unattached kinetochores in diploid human cells.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Cinetocoros/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Linhagem Celular , Diploide , Humanos
3.
Mol Cell Oncol ; 4(6): e1314238, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209640

RESUMO

The spindle assembly checkpoint (also known as the spindle or mitotic checkpoint) is a surveillance system that ensures fidelity of chromosome segregation. Here we suggest, in light of historical and more recent evidence, that this signaling system monitors kinetochore attachment and spindle assembly by two distinct, but functionally overlapping, pathways.

4.
Cell Rep ; 18(6): 1422-1433, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28178520

RESUMO

The onset of anaphase is triggered by activation of the anaphase-promoting complex/cyclosome (APC/C) following silencing of the spindle assembly checkpoint (SAC). APC/C triggers ubiquitination of Securin and Cyclin B, which leads to loss of sister chromatid cohesion and inactivation of Cyclin B/Cdk1, respectively. This promotes relocalization of Aurora B kinase and other components of the chromosome passenger complex (CPC) from centromeres to the spindle midzone. In fission yeast, this is mediated by Clp1 phosphatase-dependent interaction of CPC with Klp9/MKLP2 (kinesin-6). When this interaction is disrupted, kinetochores bi-orient normally, but APC/C activation is delayed via a mechanism that requires Sgo2 and some (Bub1, Mph1/Mps1, and Mad3), but not all (Mad1 and Mad2), components of the SAC and the first, but not second, lysine, glutamic acid, glutamine (KEN) box in Mad3. These data indicate that interaction of CPC with Klp9 terminates a Sgo2-dependent, but Mad2-independent, APC/C-inhibitory pathway that is distinct from the canonical SAC.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Schizosaccharomyces/fisiologia , Anáfase , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Asparagina/metabolismo , Aurora Quinase B/metabolismo , Ciclo Celular/fisiologia , Centrômero/metabolismo , Centrômero/fisiologia , Ciclina B/metabolismo , Ácido Glutâmico/metabolismo , Cinetocoros/metabolismo , Cinetocoros/fisiologia , Lisina/metabolismo , Proteínas Nucleares/metabolismo , Fuso Acromático/metabolismo , Fuso Acromático/fisiologia
5.
Curr Biol ; 26(19): 2642-2650, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27618268

RESUMO

The spindle assembly checkpoint (SAC) ensures that sister chromatids do not separate until all chromosomes are attached to spindle microtubules and bi-oriented. Spindle checkpoint proteins, including Mad1, Mad2, Mad3 (BubR1), Bub1, Bub3, and Mph1 (Mps1), are recruited to unattached and/or tensionless kinetochores. SAC activation catalyzes the conversion of soluble Mad2 (O-Mad2) into a form (C-Mad2) that binds Cdc20, BubR1, and Bub3 to form the mitotic checkpoint complex (MCC), a potent inhibitor of the anaphase-promoting complex (APC/C). SAC silencing de-represses Cdc20-APC/C activity allowing poly-ubiquitination of Securin and Cyclin B, leading to the dissolution of sister chromatids and anaphase onset [1]. Understanding how microtubule interaction at kinetochores influences the timing of anaphase requires an understanding of how spindle checkpoint protein interaction with the kinetochore influences spindle checkpoint signaling. We, and others, recently showed that Mph1 (Mps1) phosphorylates multiple conserved MELT motifs in the Spc7 (Spc105/KNL1) protein to recruit Bub1, Bub3, and Mad3 (BubR1) to kinetochores [2-4]. In budding yeast, Mps1 phosphorylation of a central non-catalytic region of Bub1 promotes its association with the Mad1-Mad2 complex, although this association has not yet been detected in other organisms [5]. Here we report that multisite binding of Bub3 to the Spc7 MELT array toggles the spindle checkpoint switch by permitting Mph1 (Mps1)-dependent interaction of Bub1 with Mad1-Mad2.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/fisiologia , Fuso Acromático/metabolismo , Fosforilação , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais
7.
Bioinformatics ; 31(12): i97-105, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26072515

RESUMO

MOTIVATION: The ability to jointly learn gene regulatory networks (GRNs) in, or leverage GRNs between related species would allow the vast amount of legacy data obtained in model organisms to inform the GRNs of more complex, or economically or medically relevant counterparts. Examples include transferring information from Arabidopsis thaliana into related crop species for food security purposes, or from mice into humans for medical applications. Here we develop two related Bayesian approaches to network inference that allow GRNs to be jointly inferred in, or leveraged between, several related species: in one framework, network information is directly propagated between species; in the second hierarchical approach, network information is propagated via an unobserved 'hypernetwork'. In both frameworks, information about network similarity is captured via graph kernels, with the networks additionally informed by species-specific time series gene expression data, when available, using Gaussian processes to model the dynamics of gene expression. RESULTS: Results on in silico benchmarks demonstrate that joint inference, and leveraging of known networks between species, offers better accuracy than standalone inference. The direct propagation of network information via the non-hierarchical framework is more appropriate when there are relatively few species, while the hierarchical approach is better suited when there are many species. Both methods are robust to small amounts of mislabelling of orthologues. Finally, the use of Saccharomyces cerevisiae data and networks to inform inference of networks in the budding yeast Schizosaccharomyces pombe predicts a novel role in cell cycle regulation for Gas1 (SPAC19B12.02c), a 1,3-beta-glucanosyltransferase. AVAILABILITY AND IMPLEMENTATION: MATLAB code is available from http://go.warwick.ac.uk/systemsbiology/software/.


Assuntos
Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Algoritmos , Teorema de Bayes , Ciclo Celular/genética , Simulação por Computador , Modelos Genéticos , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Software
8.
Biochem Soc Trans ; 43(1): 19-22, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25619242

RESUMO

The segregation of sister chromatids during mitosis is one of the most easily visualized, yet most remarkable, events during the life cycle of a cell. The accuracy of this process is essential to maintain ploidy during cell duplication. Over the past 20 years, substantial progress has been made in identifying components of both the kinetochore and the mitotic spindle that generate the force to move mitotic chromosomes. Additionally, we now have a reasonable, albeit incomplete, understanding of the molecular and biochemical events that are involved in establishing and dissolving sister-chromatid cohesion. However, it is less well-understood how this dissolution of cohesion occurs synchronously on all chromosomes at the onset of anaphase. At the centre of the action is the anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase that, in association with its activator cell-division cycle protein 20 homologue (Cdc20), is responsible for the destruction of securin. This leads to the activation of separase, a specialized protease that cleaves the kleisin-subunit of the cohesin complex, to relieve cohesion between sister chromatids. APC/C-Cdc20 is also responsible for the destruction of cyclin B and therefore inactivation of the cyclin B-cyclin-dependent kinase 1 (Cdk1). This latter event induces a change in the microtubule dynamics that results in the movement of sister chromatids to spindle poles (anaphase A), spindle elongation (anaphase B) and the onset of cytokinesis. In the present paper, we review the emerging evidence that multiple, spatially and temporally regulated feedback loops ensure anaphase onset is rapid, co-ordinated and irreversible.


Assuntos
Anáfase , Segregação de Cromossomos , Animais , Proteína Quinase CDC2 , Quinases Ciclina-Dependentes/metabolismo , Humanos , Cinetocoros/fisiologia , Metáfase , Transdução de Sinais , Corpos Polares do Fuso/fisiologia
9.
Syst Synth Biol ; 8(3): 205-13, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25136382

RESUMO

Members of the kinesin-8 motor family play a central role in controlling microtubule length throughout the eukaryotic cell cycle. Inactivation of kinesin-8 causes defects in cell polarity during interphase and astral and mitotic spindle length, metaphase chromosome alignment, timing of anaphase onset and accuracy of chromosome segregation. Although the biophysical mechanism by which kinesin-8 molecules influence microtubule dynamics has been studied extensively in a variety of species, a consensus view has yet to emerge. One reason for this might be that some members of the kinesin-8 family can associate to other microtubule-associated proteins, cell cycle regulatory proteins and other kinesin family members. In this review we consider how cell cycle specific modification and its association to other regulatory proteins may modulate the function of kinesin-8 to enable it to function as a master regulator of microtubule dynamics.

10.
PLoS Genet ; 10(6): e1004456, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24968058

RESUMO

Quiescence and gametogenesis represent two distinct survival strategies in response to nutrient starvation in budding yeast. Precisely how environmental signals are sensed by yeast cells to trigger quiescence and gametogenesis is not fully understood. A conserved signalling module consisting of Greatwall kinase, Endosulfine and Protein Phosphatase PP2ACdc55 proteins regulates entry into mitosis in Xenopus egg extracts and meiotic maturation in flies. We report here that an analogous signalling module consisting of the serine-threonine kinase Rim15, the Endosulfines Igo1 and Igo2 and the Protein Phosphatase PP2ACdc55, regulates entry into both quiescence and gametogenesis in budding yeast. PP2ACdc55 inhibits entry into gametogenesis and quiescence. Rim15 promotes entry into gametogenesis and quiescence by converting Igo1 into an inhibitor of PP2ACdc55 by phosphorylating at a conserved serine residue. Moreover, we show that the Rim15-Endosulfine-PP2ACdc55 pathway regulates entry into quiescence and gametogenesis by distinct mechanisms. In addition, we show that Igo1 and Igo2 are required for pre-meiotic autophagy but the lack of pre-meiotic autophagy is insufficient to explain the sporulation defect of igo1Δ igo2Δ cells. We propose that the Rim15-Endosulfine-PP2ACdc55 signalling module triggers entry into quiescence and gametogenesis by regulating dephosphorylation of distinct substrates.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Quinases/genética , Proteína Fosfatase 2/genética , Proteínas de Saccharomyces cerevisiae/genética , Autofagia/genética , Proteínas de Ciclo Celular/metabolismo , Gametogênese/genética , Miose/genética , Proteínas Quinases/metabolismo , Proteína Fosfatase 2/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
11.
Elife ; 2: e01494, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24137548

RESUMO

Details are emerging of the interactions between the kinetochore and various spindle checkpoint proteins that ensure that sister chromatids are equally divided between daughter cells during cell division.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Oligopeptídeos/metabolismo , Transdução de Sinais , Fuso Acromático , Humanos
12.
PLoS Genet ; 9(7): e1003610, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23861669

RESUMO

Sexually reproducing organisms halve their cellular ploidy during gametogenesis by undergoing a specialized form of cell division known as meiosis. During meiosis, a single round of DNA replication is followed by two rounds of nuclear divisions (referred to as meiosis I and II). While sister kinetochores bind to microtubules emanating from opposite spindle poles during mitosis, they bind to microtubules originating from the same spindle pole during meiosis I. This phenomenon is referred to as mono-orientation and is essential for setting up the reductional mode of chromosome segregation during meiosis I. In budding yeast, mono-orientation depends on a four component protein complex referred to as monopolin which consists of two nucleolar proteins Csm1 and Lrs4, meiosis-specific protein Mam1 of unknown function and casein kinase Hrr25. Monopolin complex binds to kinetochores during meiosis I and prevents bipolar attachments. Although monopolin associates with kinetochores during meiosis I, its binding site(s) on the kinetochore is not known and its mechanism of action has not been established. By carrying out an imaging-based screen we have found that the MIND complex, a component of the central kinetochore, is required for monopolin association with kinetochores during meiosis. Furthermore, we demonstrate that interaction of monopolin subunit Csm1 with the N-terminal domain of MIND complex subunit Dsn1, is essential for both the association of monopolin with kinetochores and for monopolar attachment of sister kinetochores during meiosis I. As such this provides the first functional evidence for a monopolin-binding site at the kinetochore.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Cinetocoros , Meiose/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA/genética , Microtúbulos/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Troca de Cromátide Irmã/genética
13.
Curr Biol ; 23(3): R120-2, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23391388

RESUMO

A new study shows that phospho-dependent expulsion of type-1-phosphatase (PP1) from the spindle pole by Fin1 (NIMA) kinase ensures switch-like activation of Cyclin B-Cdk1 at the G2/M transition.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Fosfoproteínas/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia
14.
Curr Biol ; 22(10): 891-9, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22521786

RESUMO

The spindle assembly checkpoint (SAC) is the major surveillance system that ensures that sister chromatids do not separate until all chromosomes are correctly bioriented during mitosis. Components of the checkpoint include Mad1, Mad2, Mad3 (BubR1), Bub3, and the kinases Bub1, Mph1 (Mps1), and Aurora B. Checkpoint proteins are recruited to kinetochores when individual kinetochores are not bound to spindle microtubules or not under tension. Kinetochore association of Mad2 causes it to undergo a conformational change, which promotes its association to Mad3 and Cdc20 to form the mitotic checkpoint complex (MCC). The MCC inhibits the anaphase-promoting complex/cyclosome (APC/C) until the checkpoint is satisfied. SAC silencing derepresses Cdc20-APC/C activity. This triggers the polyubiquitination of securin and cyclin, which promotes the dissolution of sister chromatid cohesion and mitotic progression. We, and others, recently showed that association of PP1 to the Spc7/Spc105/KNL1 family of kinetochore proteins is necessary to stabilize microtubule-kinetochore attachments and silence the SAC. We now report that phosphorylation of the conserved MELT motifs in Spc7 by Mph1 (Mps1) recruits Bub1 and Bub3 to the kinetochore and that this is required to maintain the SAC signal.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Regulação Fúngica da Expressão Gênica , Fosforilação/fisiologia , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
15.
J Cell Sci ; 125(Pt 7): 1645-51, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22375062

RESUMO

The fungal-specific heterodecameric outer kinetochore DASH complex facilitates the interaction of kinetochores with spindle microtubules. In budding yeast, where kinetochores bind a single microtubule, the DASH complex is essential, and phosphorylation of Dam1 by the Aurora kinase homologue, Ipl1, causes detachment of kinetochores from spindle microtubules. We demonstrate that in the distantly related fission yeast, where the DASH complex is not essential for viability and kinetochores bind multiple microtubules, Dam1 is instead phosphorylated on serine 143 by the Polo kinase homologue, Plo1, during prometaphase and metaphase. This phosphorylation site is conserved in most fungal Dam1 proteins, including budding yeast Dam1. We show that Dam1 phosphorylation by Plo1 is dispensable for DASH assembly and chromosome retrieval but instead aids tension-dependent chromosome bi-orientation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Aurora Quinases , Fosforilação
16.
Mol Biol Cell ; 22(23): 4486-502, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21965289

RESUMO

Type 1 phosphatase (PP1) antagonizes Aurora B kinase to stabilize kinetochore-microtubule attachments and to silence the spindle checkpoint. We screened for factors that exacerbate the growth defect of Δdis2 cells, which lack one of two catalytic subunits of PP1 in fission yeast, and identified Nsk1, a novel protein required for accurate chromosome segregation. During interphase, Nsk1 resides in the nucleolus but spreads throughout the nucleoplasm as cells enter mitosis. Following dephosphorylation by Clp1 (Cdc14-like) phosphatase and at least one other phosphatase, Nsk1 localizes to the interface between kinetochores and the inner face of the spindle pole body during anaphase. In the absence of Nsk1, some kinetochores become detached from spindle poles during anaphase B. If this occurs late in anaphase B, then the sister chromatids of unclustered kinetochores segregate to the correct daughter cell. These unclustered kinetochores are efficiently captured, retrieved, bioriented, and segregated during the following mitosis, as long as Dis2 is present. However, if kinetochores are detached from a spindle pole early in anaphase B, then these sister chromatids become missegregated. These data suggest Nsk1 ensures accurate chromosome segregation by promoting the tethering of kinetochores to spindle poles during anaphase B.


Assuntos
Anáfase , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Cinetocoros/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Proteínas de Ciclo Celular/genética , Dineínas/metabolismo , Microtúbulos/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Estabilidade Proteica , Transporte Proteico , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Fuso Acromático/genética , Fuso Acromático/metabolismo
17.
J Cell Biol ; 193(7): 1157-66, 2011 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-21690311

RESUMO

During meiosis, one round of deoxyribonucleic acid replication is followed by two rounds of nuclear division. In Saccharomyces cerevisiae, activation of the Cdc14 early anaphase release (FEAR) network is required for exit from meiosis I but does not lead to the activation of origins of replication. The precise mechanism of how FEAR regulates meiosis is not understood. In this paper, we report that premature activation of FEAR during meiosis caused by loss of protein phosphatase PP2A(Cdc55) activity blocks bipolar spindle assembly and nuclear divisions. In cdc55 meiotic null (cdc55-mn) cells, the cyclin-dependent kinase (Cdk)-counteracting phosphatase Cdc14 was released prematurely from the nucleolus concomitant with hyperphosphorylation of its nucleolar anchor protein Net1. Crucially, a mutant form of Net1 that lacks six Cdk phosphorylation sites rescued the meiotic defect of cdc55-mn cells. Expression of a dominant mutant allele of CDC14 mimicked the cdc55-mn phenotype. We propose that phosphoregulation of Net1 by PP2A(Cdc55) is essential for preventing precocious exit from meiosis I.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Quinases Ciclina-Dependentes/fisiologia , Meiose/fisiologia , Proteínas Nucleares/metabolismo , Proteína Fosfatase 2/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/citologia , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Quinases Ciclina-Dependentes/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilação , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
18.
Dev Cell ; 20(6): 739-50, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21664573

RESUMO

The spindle checkpoint is the prime cell-cycle control mechanism that ensures sister chromatids are bioriented before anaphase takes place. Aurora B kinase, the catalytic subunit of the chromosome passenger complex, both destabilizes kinetochore attachments that do not generate tension and simultaneously maintains the spindle checkpoint signal. However, it is unclear how the checkpoint is silenced following chromosome biorientation. We demonstrate that association of type 1 phosphatase (PP1(Dis2)) with both the N terminus of Spc7 and the nonmotor domains of the Klp5-Klp6 (kinesin-8) complex is necessary to counteract Aurora B kinase to efficiently silence the spindle checkpoint. The role of Klp5 and Klp6 in checkpoint silencing is specific to this class of kinesin and independent of their motor activities. These data demonstrate that at least two distinct pools of PP1, one kinetochore associated and the other motor associated, are needed to silence the spindle checkpoint.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Fuso Acromático/fisiologia , Sequência de Aminoácidos , Cromátides , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Cinesinas/genética , Cinetocoros/fisiologia , Proteínas Associadas aos Microtúbulos/genética , Mitose , Dados de Sequência Molecular , Fosfoproteínas Fosfatases/genética , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
19.
Chromosome Res ; 19(3): 393-407, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21271286

RESUMO

Regulated interaction between kinetochores and the mitotic spindle is essential for the fidelity of chromosome segregation. Potentially deleterious attachments are corrected during prometaphase and metaphase. Correct attachments must persist during anaphase, when spindle-generated forces separate chromosomes to opposite poles. In yeast, the heterodecameric DASH complex plays a vital pole in maintaining this link. In vitro DASH forms both oligomeric patches and rings that can form load-bearing attachments with the tips of polymerising and depolymerising microtubules. In vivo, DASH localises primarily at the kinetochore, and has a role maintaining correct attachment between spindles and chromosomes in both Saccharomyces cerevisiae and Schizosaccharomyces pombe. Recent work has begun to describe how DASH acts alongside other components of the outer kinetochore to create a dynamic, regulated kinetochore-microtubule interface. Here, we review some of the key experiments into DASH function and discuss their implications for the nature of kinetochore-microtubule attachments in yeast and other organisms.


Assuntos
Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animais , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Nucleares/metabolismo , Ligação Proteica , Leveduras/metabolismo
20.
Antioxid Redox Signal ; 15(1): 153-65, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20919928

RESUMO

Two-component related proteins play a major role in regulating the oxidative stress response in the fission yeast, Schizosaccharomyces pombe. For example, the peroxide-sensing Mak2 and Mak3 histidine kinases regulate H(2)O(2)-induced activation of the Sty1 stress-activated protein kinase pathway, and the Skn7-related response regulator transcription factor, Prr1, is essential for activation of the core oxidative stress response genes. Here, we investigate the mechanism by which the S. pombe two-component system senses H(2)O(2), and the potential role of two-component signaling in the regulation of Prr1. Significantly, we demonstrate that PAS and GAF domains present in the Mak2 histidine kinase are essential for redox-sensing and activation of Sty1. In addition, we find that Prr1 is required for the transcriptional response to a wide range of H(2)O(2) concentrations and, furthermore, that two-component regulation of Prr1 is specifically required for the response of cells to high levels of H(2)O(2). Significantly, this provides the first demonstration that the conserved two-component phosphorylation site on Skn7-related proteins influences resistance to oxidative stress and oxidative stress-induced gene expression. Collectively, these data provide new insights into the two-component mediated sensing and signaling mechanisms underlying the response of S. pombe to oxidative stress.


Assuntos
Peróxido de Hidrogênio/farmacologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histidina Quinase , Peróxido de Hidrogênio/metabolismo , Microscopia de Fluorescência , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...