Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 227(1)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38301657

RESUMO

FlyBase (flybase.org) is a model organism database and knowledge base about Drosophila melanogaster, commonly known as the fruit fly. Researchers from around the world rely on the genetic, genomic, and functional information available in FlyBase, as well as its tools to view and interrogate these data. In this article, we describe the latest developments and updates to FlyBase. These include the introduction of single-cell RNA sequencing data, improved content and display of functional information, updated orthology pipelines, new chemical reports, and enhancements to our outreach resources.


Assuntos
Bases de Dados Genéticas , Drosophila melanogaster , Genoma de Inseto , Animais , Drosophila melanogaster/genética , Genômica/métodos , Genes de Insetos
2.
Front Physiol ; 14: 1076533, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776967

RESUMO

As a model organism, Drosophila is uniquely placed to contribute to our understanding of how brains control complex behavior. Not only does it have complex adaptive behaviors, but also a uniquely powerful genetic toolkit, increasingly complete dense connectomic maps of the central nervous system and a rapidly growing set of transcriptomic profiles of cell types. But this also poses a challenge: Given the massive amounts of available data, how are researchers to Find, Access, Integrate and Reuse (FAIR) relevant data in order to develop an integrated anatomical and molecular picture of circuits, inform hypothesis generation, and find reagents for experiments to test these hypotheses? The Virtual Fly Brain (virtualflybrain.org) web application & API provide a solution to this problem, using FAIR principles to integrate 3D images of neurons and brain regions, connectomics, transcriptomics and reagent expression data covering the whole CNS in both larva and adult. Users can search for neurons, neuroanatomy and reagents by name, location, or connectivity, via text search, clicking on 3D images, search-by-image, and queries by type (e.g., dopaminergic neuron) or properties (e.g., synaptic input in the antennal lobe). Returned results include cross-registered 3D images that can be explored in linked 2D and 3D browsers or downloaded under open licenses, and extensive descriptions of cell types and regions curated from the literature. These solutions are potentially extensible to cover similar atlasing and data integration challenges in vertebrates.

3.
Genetics ; 220(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35266522

RESUMO

FlyBase provides a centralized resource for the genetic and genomic data of Drosophila melanogaster. As FlyBase enters our fourth decade of service to the research community, we reflect on our unique aspects and look forward to our continued collaboration with the larger research and model organism communities. In this study, we emphasize the dedicated reports and tools we have constructed to meet the specialized needs of fly researchers but also to facilitate use by other research communities. We also highlight ways that we support the fly community, including an external resources page, help resources, and multiple avenues by which researchers can interact with FlyBase.


Assuntos
Bases de Dados Genéticas , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Genoma , Genômica
4.
Nucleic Acids Res ; 49(D1): D899-D907, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33219682

RESUMO

FlyBase (flybase.org) is an essential online database for researchers using Drosophila melanogaster as a model organism, facilitating access to a diverse array of information that includes genetic, molecular, genomic and reagent resources. Here, we describe the introduction of several new features at FlyBase, including Pathway Reports, paralog information, disease models based on orthology, customizable tables within reports and overview displays ('ribbons') of expression and disease data. We also describe a variety of recent important updates, including incorporation of a developmental proteome, upgrades to the GAL4 search tab, additional Experimental Tool Reports, migration to JBrowse for genome browsing and improvements to batch queries/downloads and the Fast-Track Your Paper tool.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Drosophila melanogaster/genética , Genoma de Inseto/genética , Genômica/métodos , Animais , Genes de Insetos/genética , Bases de Conhecimento , Anotação de Sequência Molecular/métodos , Ferramenta de Busca/métodos , Navegador
5.
Database (Oxford) ; 20202020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31960022

RESUMO

Brief summaries describing the function of each gene's product(s) are of great value to the research community, especially when interpreting genome-wide studies that reveal changes to hundreds of genes. However, manually writing such summaries, even for a single species, is a daunting task; for example, the Drosophila melanogaster genome contains almost 14 000 protein-coding genes. One solution is to use computational methods to generate summaries, but this often fails to capture the key functions or express them eloquently. Here, we describe how we solicited help from the research community to generate manually written summaries of D. melanogaster gene function. Based on the data within the FlyBase database, we developed a computational pipeline to identify researchers who have worked extensively on each gene. We e-mailed these researchers to ask them to draft a brief summary of the main function(s) of the gene's product, which we edited for consistency to produce a 'gene snapshot'. This approach yielded 1800 gene snapshot submissions within a 3-month period. We discuss the general utility of this strategy for other databases that capture data from the research literature. Database URL: https://flybase.org/.


Assuntos
Coleta de Dados/métodos , Bases de Dados Genéticas , Drosophila melanogaster/genética , Genoma de Inseto/genética , Animais , Software
6.
Nucleic Acids Res ; 47(D1): D759-D765, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30364959

RESUMO

FlyBase (flybase.org) is a knowledge base that supports the community of researchers that use the fruit fly, Drosophila melanogaster, as a model organism. The FlyBase team curates and organizes a diverse array of genetic, molecular, genomic, and developmental information about Drosophila. At the beginning of 2018, 'FlyBase 2.0' was released with a significantly improved user interface and new tools. Among these important changes are a new organization of search results into interactive lists or tables (hitlists), enhanced reference lists, and new protein domain graphics. An important new data class called 'experimental tools' consolidates information on useful fly strains and other resources related to a specific gene, which significantly enhances the ability of the Drosophila researcher to design and carry out experiments. With the release of FlyBase 2.0, there has also been a restructuring of backend architecture and a continued development of application programming interfaces (APIs) for programmatic access to FlyBase data. In this review, we describe these major new features and functionalities of the FlyBase 2.0 site and how they support the use of Drosophila as a model organism for biological discovery and translational research.


Assuntos
Bases de Dados Genéticas , Drosophila melanogaster/genética , Genoma de Inseto/genética , Genômica , Animais , Domínios Proteicos/genética , Software
7.
G3 (Bethesda) ; 6(8): 2665-70, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27317776

RESUMO

In Drosophila melanogaster, P element transposition has been a productive means of insertional mutagenesis. Thousands of genes have been tagged with natural and engineered P element constructs. Nevertheless, chromosomes carrying P element insertions tend to have high levels of background mutations from P elements inserting and excising during transposition. Consequently, the phenotypes seen when P element-bearing chromosomes are homozygous are often not attributable to the P insertions themselves. In this study, 178 strains in the Bloomington Drosophila Stock Center collection with P insertions on the second chromosome were complementation tested against molecularly defined chromosomal deletions and previously characterized single-gene mutations to determine if recessive lethality or sterility is associated with the P insertions rather than background mutations. This information should prove valuable to geneticists using these strains for experimental studies of gene function.


Assuntos
Cromossomos de Insetos , Elementos de DNA Transponíveis , Drosophila melanogaster/genética , Animais , Drosophila melanogaster/fisiologia , Feminino , Teste de Complementação Genética , Infertilidade Feminina/genética , Infertilidade Masculina/genética , Masculino , Mutagênese Insercional/métodos , Fenótipo , Mutações Sintéticas Letais
8.
Dis Model Mech ; 9(3): 245-52, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26935103

RESUMO

The use of Drosophila melanogaster as a model for studying human disease is well established, reflected by the steady increase in both the number and proportion of fly papers describing human disease models in recent years. In this article, we highlight recent efforts to improve the availability and accessibility of the disease model information in FlyBase (http://flybase.org), the model organism database for Drosophila. FlyBase has recently introduced Human Disease Model Reports, each of which presents background information on a specific disease, a tabulation of related disease subtypes, and summaries of experimental data and results using fruit flies. Integrated presentations of relevant data and reagents described in other sections of FlyBase are incorporated into these reports, which are specifically designed to be accessible to non-fly researchers in order to promote collaboration across model organism communities working in translational science. Another key component of disease model information in FlyBase is that data are collected in a consistent format --- using the evolving Disease Ontology (an open-source standardized ontology for human-disease-associated biomedical data) - to allow robust and intuitive searches. To facilitate this, FlyBase has developed a dedicated tool for querying and navigating relevant data, which include mutations that model a disease and any associated interacting modifiers. In this article, we describe how data related to fly models of human disease are presented in individual Gene Reports and in the Human Disease Model Reports. Finally, we discuss search strategies and new query tools that are available to access the disease model data in FlyBase.


Assuntos
Pesquisa Biomédica , Bases de Dados Genéticas , Modelos Animais de Doenças , Doença , Drosophila melanogaster/fisiologia , Esclerose Lateral Amiotrófica/patologia , Animais , Humanos
9.
Nucleic Acids Res ; 44(D1): D786-92, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26467478

RESUMO

Many publications describe sets of genes or gene products that share a common biology. For example, genome-wide studies and phylogenetic analyses identify genes related in sequence; high-throughput genetic and molecular screens reveal functionally related gene products; and advanced proteomic methods can determine the subunit composition of multi-protein complexes. It is useful for such gene collections to be presented as discrete lists within the appropriate Model Organism Database (MOD) so that researchers can readily access these data alongside other relevant information. To this end, FlyBase (flybase.org), the MOD for Drosophila melanogaster, has established a 'Gene Group' resource: high-quality sets of genes derived from the published literature and organized into individual report pages. To facilitate further analyses, Gene Group Reports also include convenient download and analysis options, together with links to equivalent gene groups at other databases. This new resource will enable researchers with diverse backgrounds and interests to easily view and analyse acknowledged D. melanogaster gene sets and compare them with those of other species.


Assuntos
Bases de Dados Genéticas , Drosophila melanogaster/genética , Genes de Insetos , Animais , Proteínas de Drosophila/genética
10.
Database (Oxford) ; 2014(0): bau033, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24715220

RESUMO

The breadth and depth of biomedical literature are increasing year upon year. To keep abreast of these increases, FlyBase, a database for Drosophila genomic and genetic information, is constantly exploring new ways to mine the published literature to increase the efficiency and accuracy of manual curation and to automate some aspects, such as triaging and entity extraction. Toward this end, we present the 'tagtog' system, a web-based annotation framework that can be used to mark up biological entities (such as genes) and concepts (such as Gene Ontology terms) in full-text articles. tagtog leverages manual user annotation in combination with automatic machine-learned annotation to provide accurate identification of gene symbols and gene names. As part of the BioCreative IV Interactive Annotation Task, FlyBase has used tagtog to identify and extract mentions of Drosophila melanogaster gene symbols and names in full-text biomedical articles from the PLOS stable of journals. We show here the results of three experiments with different sized corpora and assess gene recognition performance and curation speed. We conclude that tagtog-named entity recognition improves with a larger corpus and that tagtog-assisted curation is quicker than manual curation. DATABASE URL: www.tagtog.net, www.flybase.org.


Assuntos
Mineração de Dados/métodos , Anotação de Sequência Molecular/métodos , Animais , Drosophila/genética , Internet , Software , Interface Usuário-Computador , Vocabulário Controlado
11.
J Biomed Semantics ; 4(1): 30, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24138933

RESUMO

BACKGROUND: Phenotype ontologies are queryable classifications of phenotypes. They provide a widely-used means for annotating phenotypes in a form that is human-readable, programatically accessible and that can be used to group annotations in biologically meaningful ways. Accurate manual annotation requires clear textual definitions for terms. Accurate grouping and fruitful programatic usage require high-quality formal definitions that can be used to automate classification. The Drosophila phenotype ontology (DPO) has been used to annotate over 159,000 phenotypes in FlyBase to date, but until recently lacked textual or formal definitions. RESULTS: We have composed textual definitions for all DPO terms and formal definitions for 77% of them. Formal definitions reference terms from a range of widely-used ontologies including the Phenotype and Trait Ontology (PATO), the Gene Ontology (GO) and the Cell Ontology (CL). We also describe a generally applicable system, devised for the DPO, for recording and reasoning about the timing of death in populations. As a result of the new formalisations, 85% of classifications in the DPO are now inferred rather than asserted, with much of this classification leveraging the structure of the GO. This work has significantly improved the accuracy and completeness of classification and made further development of the DPO more sustainable. CONCLUSIONS: The DPO provides a set of well-defined terms for annotating Drosophila phenotypes and for grouping and querying the resulting annotation sets in biologically meaningful ways. Such queries have already resulted in successful function predictions from phenotype annotation. Moreover, such formalisations make extended queries possible, including cross-species queries via the external ontologies used in formal definitions. The DPO is openly available under an open source license in both OBO and OWL formats. There is good potential for it to be used more broadly by the Drosophila community, which may ultimately result in its extension to cover a broader range of phenotypes.

12.
Database (Oxford) ; 2012: bas024, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22554788

RESUMO

Much of the data within Model Organism Databases (MODs) comes from manual curation of the primary research literature. Given limited funding and an increasing density of published material, a significant challenge facing all MODs is how to efficiently and effectively prioritize the most relevant research papers for detailed curation. Here, we report recent improvements to the triaging process used by FlyBase. We describe an automated method to directly e-mail corresponding authors of new papers, requesting that they list the genes studied and indicate ('flag') the types of data described in the paper using an online tool. Based on the author-assigned flags, papers are then prioritized for detailed curation and channelled to appropriate curator teams for full data extraction. The overall response rate has been 44% and the flagging of data types by authors is sufficiently accurate for effective prioritization of papers. In summary, we have established a sustainable community curation program, with the result that FlyBase curators now spend less time triaging and can devote more effort to the specialized task of detailed data extraction. Database URL: http://flybase.org/


Assuntos
Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Correio Eletrônico , Anotação de Sequência Molecular/métodos , Mineração de Dados , Humanos , Publicações Periódicas como Assunto
13.
BMC Bioinformatics ; 13: 16, 2012 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-22280404

RESUMO

BACKGROUND: Curation of information from bioscience literature into biological knowledge databases is a crucial way of capturing experimental information in a computable form. During the biocuration process, a critical first step is to identify from all published literature the papers that contain results for a specific data type the curator is interested in annotating. This step normally requires curators to manually examine many papers to ascertain which few contain information of interest and thus, is usually time consuming. We developed an automatic method for identifying papers containing these curation data types among a large pool of published scientific papers based on the machine learning method Support Vector Machine (SVM). This classification system is completely automatic and can be readily applied to diverse experimental data types. It has been in use in production for automatic categorization of 10 different experimental datatypes in the biocuration process at WormBase for the past two years and it is in the process of being adopted in the biocuration process at FlyBase and the Saccharomyces Genome Database (SGD). We anticipate that this method can be readily adopted by various databases in the biocuration community and thereby greatly reducing time spent on an otherwise laborious and demanding task. We also developed a simple, readily automated procedure to utilize training papers of similar data types from different bodies of literature such as C. elegans and D. melanogaster to identify papers with any of these data types for a single database. This approach has great significance because for some data types, especially those of low occurrence, a single corpus often does not have enough training papers to achieve satisfactory performance. RESULTS: We successfully tested the method on ten data types from WormBase, fifteen data types from FlyBase and three data types from Mouse Genomics Informatics (MGI). It is being used in the curation work flow at WormBase for automatic association of newly published papers with ten data types including RNAi, antibody, phenotype, gene regulation, mutant allele sequence, gene expression, gene product interaction, overexpression phenotype, gene interaction, and gene structure correction. CONCLUSIONS: Our methods are applicable to a variety of data types with training set containing several hundreds to a few thousand documents. It is completely automatic and, thus can be readily incorporated to different workflow at different literature-based databases. We believe that the work presented here can contribute greatly to the tremendous task of automating the important yet labor-intensive biocuration effort.


Assuntos
Inteligência Artificial , Bases de Dados Factuais , Bases de Dados Genéticas , Animais , Automação , Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Genômica , Camundongos/genética , Publicações , Máquina de Vetores de Suporte
14.
Nucleic Acids Res ; 37(Database issue): D555-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18948289

RESUMO

FlyBase (http://flybase.org) is a database of Drosophila genetic and genomic information. Gene Ontology (GO) terms are used to describe three attributes of wild-type gene products: their molecular function, the biological processes in which they play a role, and their subcellular location. This article describes recent changes to the FlyBase GO annotation strategy that are improving the quality of the GO annotation data. Many of these changes stem from our participation in the GO Reference Genome Annotation Project--a multi-database collaboration producing comprehensive GO annotation sets for 12 diverse species.


Assuntos
Bases de Dados Genéticas , Proteínas de Drosophila/genética , Drosophila/genética , Genes de Insetos , Animais , Genoma de Inseto , Genômica , Vocabulário Controlado
15.
Genome Biol ; 8(10): R216, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17927810

RESUMO

BACKGROUND: Mutations in genes encoding ribosomal proteins (RPs) have been shown to cause an array of cellular and developmental defects in a variety of organisms. In Drosophila melanogaster, disruption of RP genes can result in the 'Minute' syndrome of dominant, haploinsufficient phenotypes, which include prolonged development, short and thin bristles, and poor fertility and viability. While more than 50 Minute loci have been defined genetically, only 15 have so far been characterized molecularly and shown to correspond to RP genes. RESULTS: We combined bioinformatic and genetic approaches to conduct a systematic analysis of the relationship between RP genes and Minute loci. First, we identified 88 genes encoding 79 different cytoplasmic RPs (CRPs) and 75 genes encoding distinct mitochondrial RPs (MRPs). Interestingly, nine CRP genes are present as duplicates and, while all appear to be functional, one member of each gene pair has relatively limited expression. Next, we defined 65 discrete Minute loci by genetic criteria. Of these, 64 correspond to, or very likely correspond to, CRP genes; the single non-CRP-encoding Minute gene encodes a translation initiation factor subunit. Significantly, MRP genes and more than 20 CRP genes do not correspond to Minute loci. CONCLUSION: This work answers a longstanding question about the molecular nature of Minute loci and suggests that Minute phenotypes arise from suboptimal protein synthesis resulting from reduced levels of cytoribosomes. Furthermore, by identifying the majority of haplolethal and haplosterile loci at the molecular level, our data will directly benefit efforts to attain complete deletion coverage of the D. melanogaster genome.


Assuntos
Drosophila melanogaster/genética , Evolução Molecular , Mutação/genética , Fenótipo , Proteínas Ribossômicas/genética , Animais , Biologia Computacional , Citoplasma/metabolismo , Genes Duplicados/genética
16.
Genome Biol ; 3(12): RESEARCH0083, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12537572

RESUMO

BACKGROUND: The recent completion of the Drosophila melanogaster genomic sequence to high quality and the availability of a greatly expanded set of Drosophila cDNA sequences, aligning to 78% of the predicted euchromatic genes, afforded FlyBase the opportunity to significantly improve genomic annotations. We made the annotation process more rigorous by inspecting each gene visually, utilizing a comprehensive set of curation rules, requiring traceable evidence for each gene model, and comparing each predicted peptide to SWISS-PROT and TrEMBL sequences. RESULTS: Although the number of predicted protein-coding genes in Drosophila remains essentially unchanged, the revised annotation significantly improves gene models, resulting in structural changes to 85% of the transcripts and 45% of the predicted proteins. We annotated transposable elements and non-protein-coding RNAs as new features, and extended the annotation of untranslated (UTR) sequences and alternative transcripts to include more than 70% and 20% of genes, respectively. Finally, cDNA sequence provided evidence for dicistronic transcripts, neighboring genes with overlapping UTRs on the same DNA sequence strand, alternatively spliced genes that encode distinct, non-overlapping peptides, and numerous nested genes. CONCLUSIONS: Identification of so many unusual gene models not only suggests that some mechanisms for gene regulation are more prevalent than previously believed, but also underscores the complex challenges of eukaryotic gene prediction. At present, experimental data and human curation remain essential to generate high-quality genome annotations.


Assuntos
Biologia Computacional/métodos , Drosophila melanogaster/genética , Eucromatina/genética , Genes de Insetos , Genoma , Animais , Bases de Dados Genéticas , Bases de Dados de Proteínas , Proteínas de Drosophila/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...