Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 388(2): 526-535, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37977813

RESUMO

Sulfur mustard (SM) is a highly reactive organic chemical has been used as a chemical warfare agent and terrorist threat since World War I. The cornea is highly sensitive to SM toxicity and exposure to low vapor doses can cause incapacitating acute injuries. Exposure to higher doses can elicit persistent secondary keratopathies that cause reduced quality of life and impaired or lost vision. Despite a century of research, there are no specific treatments for acute or persistent ocular SM injuries. SM cytotoxicity emerges, in part, through DNA alkylation and double-strand breaks (DSBs). Because DSBs can naturally be repaired by DNA damage response pathways with low efficiency, we hypothesized that enhancing the homologous recombination pathway could pose a novel approach to mitigate SM injury. Here, we demonstrate that a dilithium salt of adenosine diphosphoribose (INV-102) increases protein levels of p53 and Sirtuin 6, upregulates transcription of BRCA1/2, enhances γH2AX focus formation, and promotes assembly of repair complexes at DSBs. Based on in vitro evidence showing INV-102 enhancement of DNA damage response through both p53-dependent and p53-independent pathways, we next tested INV-102 in a rabbit preclinical model of corneal injury. In vivo studies demonstrate a marked reduction in the incidence and severity of secondary keratopathies in INV-102-treated eyes compared with vehicle-treated eyes when treatment was started 24 hours after SM vapor exposure. These results suggest DNA repair mechanisms are a viable therapeutic target for SM injury and suggest topical treatment with INV-102 is a promising approach for SM as well as other conditions associated with DSBs. SIGNIFICANCE STATEMENT: Sulfur mustard gas corneal injury currently has no therapeutic treatment. This study aims to show the therapeutic potential of activating the body's natural DNA damage response to activate tissue repair.


Assuntos
Substâncias para a Guerra Química , Lesões da Córnea , Gás de Mostarda , Animais , Coelhos , Gás de Mostarda/toxicidade , Proteína BRCA1 , Proteína Supressora de Tumor p53 , Qualidade de Vida , Proteína BRCA2 , Lesões da Córnea/induzido quimicamente , Lesões da Córnea/tratamento farmacológico , Substâncias para a Guerra Química/toxicidade , Reparo do DNA , Dano ao DNA
2.
Dev Cell ; 40(6): 583-594.e6, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28350990

RESUMO

Mitochondrial fission mediated by the GTPase dynamin-related protein 1 (Drp1) is an attractive drug target in numerous maladies that range from heart disease to neurodegenerative disorders. The compound mdivi-1 is widely reported to inhibit Drp1-dependent fission, elongate mitochondria, and mitigate brain injury. Here, we show that mdivi-1 reversibly inhibits mitochondrial complex I-dependent O2 consumption and reverse electron transfer-mediated reactive oxygen species (ROS) production at concentrations (e.g., 50 µM) used to target mitochondrial fission. Respiratory inhibition is rescued by bypassing complex I using yeast NADH dehydrogenase Ndi1. Unexpectedly, respiratory impairment by mdivi-1 occurs without mitochondrial elongation, is not mimicked by Drp1 deletion, and is observed in Drp1-deficient fibroblasts. In addition, mdivi-1 poorly inhibits recombinant Drp1 GTPase activity (Ki > 1.2 mM). Overall, these results suggest that mdivi-1 is not a specific Drp1 inhibitor. The ability of mdivi-1 to reversibly inhibit complex I and modify mitochondrial ROS production may contribute to effects observed in disease models.


Assuntos
Dinaminas/antagonistas & inibidores , Complexo I de Transporte de Elétrons/antagonistas & inibidores , GTP Fosfo-Hidrolases/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Quinazolinonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Células COS , Respiração Celular/efeitos dos fármacos , Chlorocebus aethiops , Dinaminas/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , GTP Fosfo-Hidrolases/metabolismo , Humanos , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , NAD/metabolismo , Neurônios/metabolismo , Oxirredução/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Ratos Sprague-Dawley , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA