Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 10(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29343498

RESUMO

Brown adipose tissue (BAT) activation stimulates energy expenditure in human adults, which makes it an attractive target to combat obesity and related disorders. Recent studies demonstrated a role for G protein-coupled receptor 120 (GPR120) in BAT thermogenesis. Here, we investigated the therapeutic potential of GPR120 agonism and addressed GPR120-mediated signaling in BAT We found that activation of GPR120 by the selective agonist TUG-891 acutely increases fat oxidation and reduces body weight and fat mass in C57Bl/6J mice. These effects coincided with decreased brown adipocyte lipid content and increased nutrient uptake by BAT, confirming increased BAT activity. Consistent with these observations, GPR120 deficiency reduced expression of genes involved in nutrient handling in BAT Stimulation of brown adipocytes in vitro with TUG-891 acutely induced O2 consumption, through GPR120-dependent and GPR120-independent mechanisms. TUG-891 not only stimulated GPR120 signaling resulting in intracellular calcium release, mitochondrial depolarization, and mitochondrial fission, but also activated UCP1. Collectively, these data suggest that activation of brown adipocytes with the GPR120 agonist TUG-891 is a promising strategy to increase lipid combustion and reduce obesity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Compostos de Bifenilo/farmacologia , Mitocôndrias/metabolismo , Fenilpropionatos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Adipócitos Marrons/citologia , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Adipócitos Brancos/citologia , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Lipídeos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Oxirredução , Consumo de Oxigênio/efeitos dos fármacos , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/metabolismo , Proteína Desacopladora 1/metabolismo
2.
J Med Chem ; 61(3): 934-945, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29236497

RESUMO

As a part of our program to identify potent GPR40 agonists capable of being dosed orally once daily in humans, we incorporated fused heterocycles into our recently disclosed spiropiperidine and tetrahydroquinoline acid derivatives 1, 2, and 3 with the intention of lowering clearance and improving the maximum absorbable dose (Dabs). Hypothesis-driven structural modifications focused on moving away from the zwitterion-like structure. and mitigating the N-dealkylation and O-dealkylation issues led to triazolopyridine acid derivatives with unique pharmacology and superior pharmacokinetic properties. Compound 4 (LY3104607) demonstrated functional potency and glucose-dependent insulin secretion (GDIS) in primary islets from rats. Potent, efficacious, and durable dose-dependent reductions in glucose levels were seen during glucose tolerance test (GTT) studies. Low clearance, volume of distribution, and high oral bioavailability were observed in all species. The combination of enhanced pharmacology and pharmacokinetic properties supported further development of this compound as a potential glucose-lowering drug candidate.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Descoberta de Drogas , Hipoglicemiantes/farmacologia , Piridinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Triazóis/farmacologia , Administração Oral , Animais , Cães , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/síntese química , Hipoglicemiantes/farmacocinética , Masculino , Piridinas/administração & dosagem , Piridinas/síntese química , Piridinas/farmacocinética , Ratos , Relação Estrutura-Atividade , Triazóis/administração & dosagem , Triazóis/síntese química , Triazóis/farmacocinética
3.
Pharmacol Res Perspect ; 4(6): e00278, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28097011

RESUMO

LY2881835 is a selective, potent, and efficacious GPR40 agonist. The objective of the studies described here was to examine the pharmacological properties of LY2881835 in preclinical models of T2D. Significant increases in insulin secretion were detected when LY2881835 was tested in primary islets from WT mice but not in islets from GPR40 KO mice. Furthermore, LY2881835 potentiated glucose stimulated insulin secretion in normal lean mice. Acute administration of LY2881835 lowered glucose during OGTTs in WT mice but not in GPR40 KO mice. These findings demonstrate that LY2881835 induces GPR40-mediated activity ex vivo and in vivo. LY2881835 was administered orally at 10 mg/kg to diet-induced obese (DIO) mice (an early model of T2D due to insulin resistance) for 14 days. Statistically significant reductions in glucose were seen during OGTTs performed on days 1 and 15. When a study was done for 3 weeks in Zucker fa/fa rats, a rat model of insulin resistance, normalization of blood glucose levels equivalent to those seen in lean rats was observed. A similar study was performed in streptozotocin (STZ)-treated DIO mice to explore glucose control in a late model of T2D. In this model, pancreatic insulin content was reduced ~80% due to STZ-treatment plus the mice were insulin resistant due to their high fat diet. Glucose AUCs were significantly reduced during OGTTs done on days 1, 7, and 14 compared to control mice. In conclusion, these results demonstrate that LY2881835 functions as a GPR40-specific insulin secretagogue mediating immediate and durable glucose control in rodent models of early- and late-stage T2D.

5.
Eur J Endocrinol ; 170(6): 799-807, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23864339

RESUMO

OBJECTIVE: The objective of this study was to assess the effects of a continuous overnight infusion of des-acyl ghrelin (DAG) on acylated ghrelin (AG) levels and glucose and insulin responses to a standard breakfast meal (SBM) in eight overweight patients with type 2 diabetes. Furthermore, in the same patients and two additional subjects, the effects of DAG infusion on AG concentrations and insulin sensitivity during a hyperinsulinemic-euglycemic clamp (HEC) were assessed. RESEARCH DESIGN AND METHODS: A double-blind, placebo-controlled cross-over study design was implemented, using overnight continuous infusions of 3 and 10  µg DAG/kg per h and placebo to study the effects on a SBM. During a HEC, we studied the insulin sensitivity. RESULTS: We observed that, compared with placebo, overnight DAG administration significantly decreased postprandial glucose levels, both during continuous glucose monitoring and at peak serum glucose levels. The degree of improvement in glycemia was correlated with baseline plasma AG concentrations. Concurrently, DAG infusion significantly decreased fasting and postprandial AG levels. During the HEC, 2.5  h of DAG infusion markedly decreased AG levels, and the M-index, a measure of insulin sensitivity, was significantly improved in the six subjects in whom we were able to attain steady-state euglycemia. DAG administration was not accompanied by many side effects when compared with placebo. CONCLUSIONS: DAG administration improves glycemic control in obese subjects with type 2 diabetes through the suppression of AG levels. DAG is a good candidate for the development of compounds in the treatment of metabolic disorders or other conditions with a disturbed AG:DAG ratio, such as type 2 diabetes mellitus or Prader-Willi syndrome.


Assuntos
Glicemia/efeitos dos fármacos , Grelina/sangue , Obesidade/tratamento farmacológico , Acilação , Adulto , Glicemia/metabolismo , Regulação para Baixo/efeitos dos fármacos , Feminino , Grelina/uso terapêutico , Técnica Clamp de Glucose , Humanos , Masculino , Refeições , Pessoa de Meia-Idade , Obesidade/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...