Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Psychol Res ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526580

RESUMO

The recent review by Eaves et al. (Psychological Research/Psychologische Forschung, 2022) outlines the research conducted to-date on combined action-observation and motor imagery (AOMI), and more specifically, its added benefit to learning. Of interest, these findings have been primarily attributed to the dual action simulation hypothesis, whereby AO and MI activate separable representations for action that may be later merged when they are congruent with one another. The present commentary more closely evaluates this explanation. What's more, we offer an alternative information-based argument where the benefit to learning may be served instead by the availability of key information. Along these lines, we speculate on possible future directions including the need for a transfer design.

2.
J Exp Bot ; 75(5): 1437-1450, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37988591

RESUMO

Root growth in Arabidopsis is inhibited by exogenous auxin-amino acid conjugates, and mutants resistant to one such conjugate [indole-3-acetic acid (IAA)-Ala] map to a gene (AtIAR1) that is a member of a metal transporter family. Here, we test the hypothesis that AtIAR1 controls the hydrolysis of stored conjugated auxin to free auxin through zinc transport. AtIAR1 complements a yeast mutant sensitive to zinc, but not manganese- or iron-sensitive mutants, and the transporter is predicted to be localized to the endoplasmic reticulum/Golgi in plants. A previously identified Atiar1 mutant and a non-expressed T-DNA mutant both exhibit altered auxin metabolism, including decreased IAA-glucose conjugate levels in zinc-deficient conditions and insensitivity to the growth effect of exogenous IAA-Ala conjugates. At a high concentration of zinc, wild-type plants show a novel enhanced response to root growth inhibition by exogenous IAA-Ala which is disrupted in both Atiar1 mutants. Furthermore, both Atiar1 mutants show changes in auxin-related phenotypes, including lateral root density and hypocotyl length. The findings therefore suggest a role for AtIAR1 in controlling zinc release from the secretory system, where zinc homeostasis plays a key role in regulation of auxin metabolism and plant growth regulation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Mutação , Ácidos Indolacéticos/metabolismo , Zinco/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Plant J ; 116(6): 1748-1765, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37715733

RESUMO

The plant citrate transporters, functional in mineral nutrient uptake and homeostasis, usually belong to the multidrug and toxic compound extrusion transporter family. We identified and functionally characterized a rice (Oryza sativa) citrate transporter, OsCT1, which differs from known plant citrate transporters and is structurally close to rice silicon transporters. Domain analysis depicted that OsCT1 carries a bacterial citrate-metal transporter domain, CitMHS. OsCT1 showed citrate efflux activity when expressed in Xenopus laevis oocytes and is localized to the cell plasma membrane. It is highly expressed in the shoot and reproductive tissues of rice, and its promoter activity was visible in cells surrounding the vasculature. The OsCT1 knockout (KO) lines showed a reduced citrate content in the shoots and the root exudates, whereas overexpression (OE) line showed higher citrate exudation from their roots. Further, the KO and OE lines showed variations in the manganese (Mn) distribution leading to changes in their agronomical traits. Under deficient conditions (Mn-sufficient conditions followed by 8 days of 0 µm MnCl2 · 4H2 O treatment), the supply of manganese towards the newer leaf was found to be obstructed in the KO line. There were no significant differences in phosphorus (P) distribution; however, P uptake was reduced in the KO and increased in OE lines at the vegetative stage. Further, experiments in Xenopus oocytes revealed that OsCT1 could efflux citrate with Mn. In this way, we provide insights into a mechanism of citrate-metal transport in plants and its role in mineral homeostasis, which remains conserved with their bacterial counterparts.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Manganês/metabolismo , Fósforo/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ácido Cítrico/metabolismo , Minerais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
J Sports Sci ; 41(3): 291-297, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37163462

RESUMO

Irrational beliefs are a risk factor for mental ill-health and exercise dependence. In addition to this, researchers have also proposed that body image inflexibility can determine mental health and behavioural outcomes. However, research is yet to explore whether and to what extent irrational beliefs and body image inflexibility align to influence mental health and exercise dependence. We examined the latent profile structure of irrational beliefs and body image inflexibility, and how these latent profiles relate to mental health and exercise dependence in exercise active adults. Results indicate a two class profile, whereby class 1 is characterized by high irrational beliefs and body image inflexibility, and class 2 is characterized by low irrational beliefs and body image inflexibility. Those in class 1 reported significantly greater depression, anxiety, stress, and exercise dependence than those in class 2 (p ≤ .02). The findings are discussed in relation to the implications for practitioners in the mental health of exercise participants.


Assuntos
Imagem Corporal , Bem-Estar Psicológico , Adulto , Humanos , Imagem Corporal/psicologia , Ansiedade/psicologia , Exercício Físico/psicologia
5.
Sci Rep ; 13(1): 6135, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061545

RESUMO

Investigative interviews (e.g., interrogations) are a critical component of criminal, military, and civil investigations. However, how levels of alertness (vs. sleepiness) of the interviewer impact outcomes of actual interviews is unknown. To this end, the current study tracked daily fluctuations in alertness among professional criminal investigators to predict their daily experiences with actual field interviews. Fifty law-enforcement investigators wore a sleep-activity tracker for two weeks while keeping a daily-diary of investigative interviews conducted in the field. For each interview, the investigators indicated how well they established rapport with the subject, how much resistance they encountered, how well they maintained their own focus and composure, and the overall utility of intelligence obtained. Daily alertness was biomathematically modeled from actigraphic sleep duration and continuity estimates and used to predict interview characteristics. Investigators consistently reported more difficulties maintaining their focus and composure as well as encountering more subject resistance during interviews on days with lower alertness. Better interview outcomes were also reported on days with subjectively better sleep, while findings were generally robust to inclusion of covariates. The findings implicate adequate sleep as a modifiable fitness factor for collectors of human intelligence.


Assuntos
Atenção , Sono , Humanos , Vigília , Fadiga , Duração do Sono
6.
Sci Adv ; 8(42): eabo6693, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36269836

RESUMO

In plants, a variety of stimuli trigger long-range calcium signals that travel rapidly along the vasculature to distal tissues via poorly understood mechanisms. Here, we use quantitative imaging and analysis to demonstrate that traveling calcium waves are mediated by diffusion and bulk flow of amino acid chemical messengers. We propose that wounding triggers release of amino acids that diffuse locally through the apoplast, activating the calcium-permeable channel GLUTAMATE RECEPTOR-LIKE 3.3 as they pass. Over long distances through the vasculature, the wound-triggered dynamics of a fluorescent tracer show that calcium waves are likely driven by bulk flow of a channel-activating chemical. We observed that multiple stimuli trigger calcium waves with similar dynamics, but calcium waves alone cannot initiate all systemic defense responses, suggesting that mobile chemical messengers are a core component of complex systemic signaling in plants.

7.
J Plant Physiol ; 279: 153833, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257088

RESUMO

Oil palm (Elaeis guineensis Jacq.) is an important crop for oil and biodiesel production. Oil palm plantations require extensive fertilizer additions to achieve a high yield. Fertilizer application decisions and management for oil palm farming rely on leaf tissue and soil nutrient analyses with little information available to describe the key players for nutrient uptake. A molecular understanding of how nutrients, especially nitrogen (N), are taken up in oil palm is very important to improve fertilizer use and formulation practice in oil palm plantations. In this work, two nitrate uptake genes in oil palm, EgNRT2.3 and EgNAR2, were cloned and characterized. Spatial expression analysis showed high expression of these two genes was mainly found in un-lignified young roots. Interestingly, EgNRT2.3 and EgNAR2 were up-regulated by N deprivation, but their expression pattern depended on the form of N source. Promoter analysis of these two genes confirmed the presence of regulatory elements that support these expression patterns. The Xenopus oocyte assay showed that EgNRT2.3 and EgNAR2 had to act together to take up nitrate. The results suggest that EgNRT2.3 and EgNAR2 act as a two-component nitrate uptake system in oil palm.


Assuntos
Arecaceae , Nitratos , Nitrogênio , Fertilizantes , Arecaceae/genética , Folhas de Planta/genética , Óleo de Palmeira
8.
New Phytol ; 235(5): 1796-1806, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35637611

RESUMO

Growth at increased concentrations of CO2 induces a reduction in seed zinc (Zn) and iron (Fe). Using Arabidopsis thaliana, we investigated whether this could be mitigated by reducing the elevated CO2 -induced decrease in transpiration. We used an infrared imaging-based screen to isolate mutants in At1g08080 that encodes ALPHA CARBONIC ANHYDRASE 7 (ACA7). aca7 mutant alleles display wild-type (WT) responses to abscisic acid (ABA) and light but are compromised in their response to elevated CO2 . ACA7 is expressed in guard cells. When aca7 mutants are grown at 1000 ppm CO2 they exhibit higher transpiration and higher seed Fe and Zn content than WT grown under the same conditions. Our data show that by increasing transpiration it is possible to partially mitigate the reduction in seed Fe and Zn content when Arabidopsis is grown at elevated CO2 .


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/genética , Dióxido de Carbono/farmacologia , Mutação/genética , Estômatos de Plantas/fisiologia , Sementes , Zinco
9.
Plant Mol Biol ; 109(1-2): 67-82, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35377091

RESUMO

KEY MESSAGE: Plasma membrane-localized AtAVT6D importing aspartic acid can be targeted to develop plants with enhanced osmotic and nitrogen-starvation tolerance. AtAVT6D promoter can be exploited as a stress-inducible promoter for genetic improvements to raise stress-resilient crops. The AtAVT6 family of amino acid transporters in Arabidopsis thaliana has been predicted to export amino acids like aspartate and glutamate. However, the functional characterization of these amino acid transporters in plants remains unexplored. The present study investigates the expression patterns of AtAVT6 genes in different tissues and under various abiotic stress conditions using quantitative Real-time PCR. The expression analysis demonstrated that the member AtAVT6D was significantly induced in response to phytohormone ABA and stresses like osmotic and drought. The tissue-specific expression analysis showed that AtAVT6D was strongly expressed in the siliques. Taking together these results, we can speculate that AtAVT6D might play a vital role in silique development and abiotic stress tolerance. Further, subcellular localization study showed AtAVT6D was localized to the plasma membrane. The heterologous expression of AtAVT6D in yeast cells conferred significant tolerance to nitrogen-deficient and osmotic stress conditions. The Xenopus oocyte studies revealed that AtAVT6D is involved in the uptake of Aspartic acid. While overexpression of AtAVT6D resulted in smaller siliques in Arabidopsis thaliana. Additionally, transient expression studies were performed with the full-length AtAVT6D promoter and its deletion constructs to study the effect of ACGT-N24-ACGT motifs on the reporter gene expression in response to abiotic stresses and ABA treatment. The fluorometric GUS analyses revealed that the promoter deletion construct-2 (Pro.C2) possessing a single copy of ACGT-N24-ACGT motif directed the strongest GUS expression under all the abiotic conditions tested. These results suggest that Pro.C2 can be used as a stress-inducible promoter to drive a significant transgene expression.


Assuntos
Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , Ácido Aspártico/genética , Secas , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Pressão Osmótica , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico
10.
Genes (Basel) ; 13(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35052498

RESUMO

The genome sequences of several legume species are now available allowing the comparison of the nitrogen (N) transporter inventories with non-legume species. A survey of the genes encoding inorganic N transporters and the sensing and assimilatory families in pea, revealed similar numbers of genes encoding the primary N assimilatory enzymes to those in other types of plants. Interestingly, we find that pea and Medicago truncatula have fewer members of the NRT2 nitrate transporter family. We suggest that this difference may result from a decreased dependency on soil nitrate acquisition, as legumes have the capacity to derive N from a symbiotic relationship with diazotrophs. Comparison with M. truncatula, indicates that only one of three NRT2s in pea is likely to be functional, possibly indicating less N uptake before nodule formation and N-fixation starts. Pea seeds are large, containing generous amounts of N-rich storage proteins providing a reserve that helps seedling establishment and this may also explain why fewer high affinity nitrate transporters are required. The capacity for nitrate accumulation in the vacuole is another component of assimilation, as it can provide a storage reservoir that supplies the plant when soil N is depleted. Comparing published pea tissue nitrate concentrations with other plants, we find that there is less accumulation of nitrate, even in non-nodulated plants, and that suggests a lower capacity for vacuolar storage. The long-distance transported form of organic N in the phloem is known to be specialized in legumes, with increased amounts of organic N molecules transported, like ureides, allantoin, asparagine and amides in pea. We suggest that, in general, the lower tissue and phloem nitrate levels compared with non-legumes may also result in less requirement for high affinity nitrate transporters. The pattern of N transporter and assimilatory enzyme distribution in pea is discussed and compared with non-legumes with the aim of identifying future breeding targets.


Assuntos
Compostos Inorgânicos/metabolismo , Nitrogênio/metabolismo , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Transporte de Íons , Pisum sativum/crescimento & desenvolvimento , Proteínas de Plantas/genética
11.
Plant Mol Biol ; 107(6): 451-475, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34674117

RESUMO

KEY MESSAGE: The review describes the importance of amino acid transporters in plant growth, development, stress tolerance, and productivity. The promoter analysis provides valuable insights into their functionality leading to agricultural benefits. Arabidopsis thaliana genome is speculated to possess more than 100 amino acid transporter genes. This large number suggests the functional significance of amino acid transporters in plant growth and development. The current article summarizes the substrate specificity, cellular localization, tissue-specific expression, and expression of the amino acid transporter genes in response to environmental cues. However, till date functionality of a majority of amino acid transporter genes in plant development and stress tolerance is unexplored. Considering, that gene expression is mainly regulated by the regulatory motifs localized in their promoter regions at the transcriptional levels. The promoter regions ( ~ 1-kbp) of these amino acid transporter genes were analysed for the presence of cis-regulatory motifs responsive to developmental and external cues. This analysis can help predict the functionality of known and unexplored amino acid transporters in different tissues, organs, and various growth and development stages and responses to external stimuli. Furthermore, based on the promoter analysis and utilizing the microarray expression data we have attempted to identify plausible candidates (listed below) that might be targeted for agricultural benefits.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Arabidopsis/genética , Produtos Agrícolas/genética , Perfilação da Expressão Gênica , Regiões Promotoras Genéticas , Sistemas de Transporte de Aminoácidos/metabolismo , Arabidopsis/efeitos da radiação , Produtos Agrícolas/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação
12.
EMBO J ; 40(21): e106847, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34523752

RESUMO

The preference for nitrate over chloride through regulation of transporters is a fundamental feature of plant ion homeostasis. We show that Medicago truncatula MtNPF6.5, an ortholog of Arabidopsis thaliana AtNPF6.3/NRT1.1, can mediate nitrate and chloride uptake in Xenopus oocytes but is chloride selective and that its close homologue, MtNPF6.7, can transport nitrate and chloride but is nitrate selective. The MtNPF6.5 mutant showed greatly reduced chloride content relative to wild type, and MtNPF6.5 expression was repressed by high chloride, indicating a primary role for MtNPF6.5 in root chloride uptake. MtNPF6.5 and MtNPF6.7 were repressed and induced by nitrate, respectively, and these responses required the transcription factor MtNLP1. Moreover, loss of MtNLP1 prevented the rapid switch from chloride to nitrate as the main anion in nitrate-starved plants after nitrate provision, providing insight into the underlying mechanism for nitrate preference. Sequence analysis revealed three sub-types of AtNPF6.3 orthologs based on their predicted substrate-binding residues: A (chloride selective), B (nitrate selective), and C (legume specific). The absence of B-type AtNPF6.3 homologues in early diverged plant lineages suggests that they evolved from a chloride-selective MtNPF6.5-like protein.


Assuntos
Proteínas de Transporte de Ânions/genética , Cloretos/metabolismo , Regulação da Expressão Gênica de Plantas , Medicago truncatula/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Animais , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Evolução Biológica , Transporte Biológico , Sequência Conservada , Homeostase , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Oócitos , Filogenia , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Xenopus laevis
13.
Sleep ; 44(10)2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-33993292

RESUMO

STUDY OBJECTIVES: Despite centuries of using sleep deprivation to interrogate, there is virtually no scientific evidence on how sleep shapes behavior within interrogation settings. To evaluate the impact of sleeplessness on participants' behavior during investigative interviews, an experimental study examined the impact of sleep restriction on disclosure of past illegal behavior. METHODS: Healthy participants from a university community (N = 143) either maintained or curbed their sleep (up to 4 h a night) across 2 days with sleep monitored via actigraphy. They were then asked to disclose past illegal acts and interviewed about them. Next, they were reinterviewed following an example of a detailed memory account (model statement). Disclosures were blindly coded for quantity and quality by two independent raters. RESULTS: Sleep-restricted individuals reported similar offenses, but less information during their disclosure with slightly less precision. Model statement increased disclosure but did not reduce the inhibiting impact of sleep loss. Mediation analysis confirmed the causal role of sleep as responsible for experimental differences in amount of information, and participants' reports suggested impaired motivation to recall information played a role. CONCLUSIONS: The findings suggest that even moderate sleep loss can inhibit criminal disclosure during interviews, point to motivational factors as responsible, and suggest investigators should be cautious when interrogating sleepy participants.


Assuntos
Criminosos , Revelação , Humanos , Sono , Privação do Sono , Vigília
14.
Plant Methods ; 17(1): 11, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33516255

RESUMO

BACKGROUND: Management regime can hugely influence the efficiency of crop production but measuring real-time below-ground responses is difficult. The combination of fertiliser application and mowing or grazing may have a major impact on roots and on the soil nutrient profile and leaching. RESULTS: A novel approach was developed using low-cost ion-selective sensors to track nitrate (NO3-) movement through soil column profiles sown with the forage crops, Lolium perenne and Medicago sativa. Applications of fertiliser, defoliation of crops and intercropping of the grass and the legume were tested. Sensor measurements were compared with conventional testing of lysimeter and leachate samples. There was little leaching of NO3- through soil profiles with current management practices, as monitored by both methods. After defoliation, the measurements detected a striking increase in soil NO3- in the middle of the column where the greatest density of roots was found. This phenomenon was not detected when no NO3- was applied, and when there was no defoliation, or during intercropping with Medicago. CONCLUSION: Mowing or grazing may increase rhizodeposition of carbon that stimulates soil mineralization to release NO3- that is acquired by roots without leaching from the profile. The soil columns and sensors provided a dynamic insight into rhizosphere responses to changes in above-ground management practices.

15.
J Exp Bot ; 72(11): 4038-4052, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33471895

RESUMO

Organic acids (OAs) are central to cellular metabolism. Many plant stress responses involve the exudation of OAs at the root-soil interface, which can improve soil mineral acquisition and toxic metal tolerance. Because of their simple structure, the low-molecular-weight OAs are widely studied. We discuss the conventional roles of OAs, and some newly emerging roles in plant stress tolerance. OAs are more versatile in their role in plant stress tolerance and are more efficient chelating agents than other acids, such as amino acids. Root OA exudation is important in soil carbon sequestration. These functions are key processes in combating climate change and helping with more sustainable food production. We briefly review the mechanisms behind enhanced biosynthesis, secretion, and regulation of these activities under different stresses, and provide an outline of the transgenic approaches targeted towards the enhanced production and secretion of OAs. A recurring theme of OAs in plant biology is their role as 'acids' modifying pH, as 'chelators' binding metals, or as 'carbon sources' for microbes. We argue that these multiple functions are key factors for understanding these molecules' important roles in plant stress biology. Finally, we discuss how the functions of OAs in plant stress responses could be used, and identify the important unanswered questions.


Assuntos
Plantas , Poluentes do Solo , Metais , Compostos Orgânicos , Solo
16.
Trends Plant Sci ; 25(12): 1194-1202, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32830043

RESUMO

Root-soil interactions in the rhizosphere are central to resource acquisition and crop production in agricultural systems. However, apart from studies in idealized experimental systems, rhizosphere processes in real agricultural soils in situ are largely uncharacterized. This limits the contribution of rhizosphere science to agriculture and the ongoing Green Revolution. Here, we argue that understanding plant responses to soil heterogeneity is key to understanding rhizosphere processes. We highlight rhizosphere sensing and root-induced soil modification in the context of heterogeneous soil structure, resource distribution, and root-soil interactions. A deeper understanding of the integrated and dynamic root-soil interactions in the heterogeneously structured rhizosphere could increase crop production and resource use efficiency towards sustainable agriculture.


Assuntos
Rizosfera , Microbiologia do Solo , Agricultura , Raízes de Plantas , Solo
17.
J Exp Bot ; 71(18): 5689-5704, 2020 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-32599619

RESUMO

The use of potential biostimulants is of broad interest in plant science for improving yields. The application of a humic derivative called fulvic acid (FA) may improve forage crop production. FA is an uncharacterized mixture of chemicals and, although it has been reported to increase growth parameters in many species including legumes, its mode of action remains unclear. Previous studies of the action of FA have lacked appropriate controls, and few have included field trials. Here we report yield increases due to FA application in three European Medicago sativa cultivars, in studies which include the appropriate nutritional controls which hitherto have not been used. No significant growth stimulation was seen after FA treatment in grass species in this study at the treatment rate tested. Direct application to bacteria increased Rhizobium growth and, in M. sativa trials, root nodulation was stimulated. RNA transcriptional analysis of FA-treated plants revealed up-regulation of many important early nodulation signalling genes after only 3 d. Experiments in plate, glasshouse, and field environments showed yield increases, providing substantial evidence for the use of FA to benefit M. sativa forage production.


Assuntos
Fabaceae , Rhizobium , Benzopiranos/farmacologia , Nodulação , Simbiose , Regulação para Cima
18.
J Exp Bot ; 71(15): 4380-4392, 2020 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-32206788

RESUMO

The enzymatic controlled metabolic processes in cells occur at their optimized pH ranges, therefore cellular pH homeostasis is fundamental for life. In plants, the nitrogen (N) source for uptake and assimilation, mainly in the forms of nitrate (NO3-) and ammonium (NH4+) quantitatively dominates the anion and cation equilibrium and the pH balance in cells. Here we review ionic and pH homeostasis in plant cells and regulation by N source from the rhizosphere to extra- and intracellular pH regulation for short- and long-distance N distribution and during N assimilation. In the process of N transport across membranes for uptake and compartmentation, both proton pumps and proton-coupled N transporters are essential, and their proton-binding sites may sense changes of apoplastic or intracellular pH. In addition, during N assimilation, carbon skeletons are required to synthesize amino acids, thus the combination of NO3- or NH4+ transport and assimilation results in different net charge and numbers of protons in plant cells. Efficient maintenance of N-controlled cellular pH homeostasis may improve N uptake and use efficiency, as well as enhance the resistance to abiotic stresses.


Assuntos
Compostos de Amônio , Nitrogênio , Homeostase , Concentração de Íons de Hidrogênio , Nitratos , Fenômenos Fisiológicos Vegetais
19.
Int J Mol Sci ; 21(4)2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075298

RESUMO

Improving nitrogen use efficiency (NUE) is very important for crops throughout the world. Rice mainly utilizes ammonium as an N source, but it also has four NRT2 genes involved in nitrate transport. The OsNRT2.3b transporter is important for maintaining cellular pH under mixed N supplies. Overexpression of this transporter driven by a ubiquitin promoter in rice greatly improved yield and NUE. This strategy for improving the NUE of crops may also be important for other cereals such as wheat and barley, which also face the challenges of nutrient uptake balance. To test this idea, we constructed transgenic barley lines overexpressing OsNRT2.3b. These transgenic barley lines overexpressing the rice transporter exhibited improved growth, yield, and NUE. We demonstrated that NRT2 family members and the partner protein HvNAR2.3 were also up-regulated by nitrate treatment (0.2 mM) in the transgenic lines. This suggests that the expression of OsNRT2.3b and other HvNRT2 family members were all up-regulated in the transgenic barley to increase the efficiency of N uptake and usage. We also compared the ubiquitin (Ubi) and a phloem-specific (RSs1) promoter-driven expression of OsNRT2.3b. The Ubi promoter failed to improve nutrient uptake balance, whereas the RSs1 promoter succeed in increasing the N, P, and Fe uptake balance. The nutrient uptake enhancement did not include Mn and Mg. Surprisingly, we found that the choice of promoter influenced the barley phenotype, not only increasing NUE and grain yield, but also improving nutrient uptake balance.


Assuntos
Proteínas de Transporte de Ânions/genética , Transporte Biológico/genética , Hordeum/genética , Oryza/genética , Regulação da Expressão Gênica de Plantas , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Transportadores de Nitrato , Óxidos de Nitrogênio/metabolismo , Nutrientes/genética , Nutrientes/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Regiões Promotoras Genéticas/genética
20.
New Phytol ; 225(4): 1667-1680, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31581317

RESUMO

Seed vigour and early establishment are important factors determining the yield of crops. A wheat nitrate-inducible NAC transcription factor, TaNAC2, plays a critical role in promoting crop growth and nitrogen use efficiency (NUE), and now its role in seed vigour is revealed. A TaNAC2 regulated gene was identified that is a NRT2-type nitrate transporter TaNRT2.5 with a key role in seed vigour. Overexpressing TaNAC2-5A increases grain nitrate concentration and seed vigour by directly binding to the promoter of TaNRT2.5-3B and positively regulating its expression. TaNRT2.5 is expressed in developing grain, particularly the embryo and husk. In Xenopus oocyte assays TaNRT2.5 requires a partner protein TaNAR2.1 to give nitrate transport activity, and the transporter locates to the tonoplast in a tobacco leaf transient expression system. Furthermore, in the root TaNRT2.5 and TaNRT2.1 function in post-anthesis acquisition of soil nitrate. Overexpression of TaNRT2.5-3B increases seed vigour, grain nitrate concentration and yield, whereas RNA interference of TaNRT2.5 has the opposite effects. The TaNAC2-NRT2.5 module has a key role in regulating grain nitrate accumulation and seed vigour. Both genes can potentially be used to improve grain yield and NUE in wheat.


Assuntos
Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Sementes/fisiologia , Fatores de Transcrição/metabolismo , Triticum/metabolismo , Animais , Transporte Biológico , Regulação da Expressão Gênica de Plantas/fisiologia , Oócitos/metabolismo , Proteínas de Plantas/genética , Transporte Proteico , Transdução de Sinais , Fatores de Transcrição/genética , Triticum/genética , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...