Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroendocrinol ; : e13397, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659185

RESUMO

The neurohormone oxytocin (OT) has become a major target for the development of novel therapeutic strategies to treat psychiatric disorders such as autism spectrum disorder because of its integral role in governing many facets of mammalian social behavior. Whereas extensive work in rodents has produced much of our knowledge of OT, we lack basic information about its neurobiology in primates making it difficult to interpret the limited effects that OT manipulations have had in human patients. In fact, previous studies have revealed only limited OT fibers in primate brains. Here, we investigated the OT connectome in marmoset using immunohistochemistry, and mapped OT fibers throughout the brains of adult male and female marmoset monkeys. We found extensive OT projections reaching limbic and cortical areas that are involved in the regulation of social behaviors, such as the amygdala, the medial prefrontal cortex, and the basal ganglia. The pattern of OT fibers observed in marmosets is notably similar to the OT connectomes described in rodents. Our findings here contrast with previous results by demonstrating a broad distribution of OT throughout the marmoset brain. Given the prevalence of this neurohormone in the primate brain, methods developed in rodents to manipulate endogenous OT are likely to be applicable in marmosets.

2.
Curr Opin Neurobiol ; 86: 102872, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564829

RESUMO

The precision of primate visually guided reaching likely evolved to meet the many challenges faced by living in arboreal environments, yet much of what we know about the underlying primate brain organization derives from a set of highly constrained experimental paradigms. Here we review the role of vision to guide natural reach-to-grasp movements in marmoset monkey prey capture to illustrate the breadth and diversity of these behaviors in ethological contexts, the fast predictive nature of these movements [1,2], and the advantages of this particular primate model to investigate the underlying neural mechanisms in more naturalistic contexts [3]. In addition to their amenability to freely-moving neural recording methods for investigating the neural basis of dynamic ethological behaviors [4,5], marmosets have a smooth neocortical surface that facilitates imaging and array recordings [6,7] in all areas in the primate fronto-parietal network [8,9]. Together, this model organism offers novel opportunities to study the real-world interplay between primate vision and reach-to-grasp dynamics using ethologically motivated neuroscientific experimental designs.

3.
bioRxiv ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38559173

RESUMO

Here we tested the respective contributions of primate premotor and prefrontal cortex to support vocal behavior. We applied a model-based GLM analysis that better accounts for the inherent variance in natural, continuous behaviors to characterize the activity of neurons throughout frontal cortex as freely-moving marmosets engaged in conversational exchanges. While analyses revealed functional clusters of neural activity related to the different processes involved in the vocal behavior, these clusters did not map to subfields of prefrontal or premotor cortex, as has been observed in more conventional task-based paradigms. Our results suggest a distributed functional organization for the myriad neural mechanisms underlying natural social interactions and has implications for our concepts of the role that frontal cortex plays in governing ethological behaviors in primates.

4.
bioRxiv ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260560

RESUMO

The neurohormone oxytocin (OT) has become a major target for the development of novel therapeutic strategies to treat psychiatric disorders such as autism spectrum disorder because of its integral role in governing many facets of mammalian social behavior. Whereas extensive work in rodents has produced much of our knowledge of OT, we lack basic information about its neurobiology in primates making it difficult to interpret the limited effects that OT manipulations have had in human patients. In fact, previous studies have revealed only limited OT fibers in primate brains. Here, we investigated the OT connectome in marmoset using immunohistochemistry, and mapped OT fibers throughout the brains of adult male and female marmoset monkeys. We found extensive OT projections reaching limbic and cortical areas that are involved in the regulation of social behaviors, such as the amygdala, the medial prefrontal cortex and the basal ganglia. The pattern of OT fibers observed in marmosets is notably similar to the OT connectomes described in rodents. Our findings here contrast with previous results by demonstrating a broad distribution of OT throughout the marmoset brain. Given the prevalence of this neurohormone in the primate brain, methods developed in rodents to manipulate endogenous OT are likely to be applicable in marmosets.

5.
Science ; 382(6669): 417-423, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37883535

RESUMO

Faces and voices are the dominant social signals used to recognize individuals among primates. Yet, it is not known how these signals are integrated into a cross-modal representation of individual identity in the primate brain. We discovered that, although single neurons in the marmoset hippocampus exhibited selective responses when presented with the face or voice of a specific individual, a parallel mechanism for representing the cross-modal identities for multiple individuals was evident within single neurons and at the population level. Manifold projections likewise showed the separability of individuals as well as clustering for others' families, which suggests that multiple learned social categories are encoded as related dimensions of identity in the hippocampus. Neural representations of identity in the hippocampus are thus both modality independent and reflect the primate social network.


Assuntos
Callithrix , Reconhecimento Facial , Hipocampo , Neurônios , Identificação Social , Reconhecimento de Voz , Animais , Hipocampo/citologia , Hipocampo/fisiologia , Callithrix/fisiologia , Callithrix/psicologia , Reconhecimento Facial/fisiologia , Reconhecimento de Voz/fisiologia , Neurônios/fisiologia , Rede Social
6.
Ann N Y Acad Sci ; 1528(1): 13-28, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37615212

RESUMO

An increasingly popular animal model for studying the neural basis of social behavior, cognition, and communication is the common marmoset (Callithrix jacchus). Interest in this New World primate across neuroscience is now being driven by their proclivity for prosociality across their repertoire, high volubility, and rapid development, as well as their amenability to naturalistic testing paradigms and freely moving neural recording and imaging technologies. The complement of these characteristics set marmosets up to be a powerful model of the primate social brain in the years to come. Here, we focus on vocal communication because it is the area that has both made the most progress and illustrates the prodigious potential of this species. We review the current state of the field with a focus on the various brain areas and networks involved in vocal perception and production, comparing the findings from marmosets to other animals, including humans.

7.
Nat Nanotechnol ; 18(10): 1241-1251, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430038

RESUMO

Crossing the blood-brain barrier in primates is a major obstacle for gene delivery to the brain. Adeno-associated viruses (AAVs) promise robust, non-invasive gene delivery from the bloodstream to the brain. However, unlike in rodents, few neurotropic AAVs efficiently cross the blood-brain barrier in non-human primates. Here we report on AAV.CAP-Mac, an engineered variant identified by screening in adult marmosets and newborn macaques, which has improved delivery efficiency in the brains of multiple non-human primate species: marmoset, rhesus macaque and green monkey. CAP-Mac is neuron biased in infant Old World primates, exhibits broad tropism in adult rhesus macaques and is vasculature biased in adult marmosets. We demonstrate applications of a single, intravenous dose of CAP-Mac to deliver functional GCaMP for ex vivo calcium imaging across multiple brain areas, or a cocktail of fluorescent reporters for Brainbow-like labelling throughout the macaque brain, circumventing the need for germline manipulations in Old World primates. As such, CAP-Mac is shown to have potential for non-invasive systemic gene transfer in the brains of non-human primates.


Assuntos
Encéfalo , Callithrix , Humanos , Animais , Recém-Nascido , Chlorocebus aethiops , Macaca mulatta/genética , Callithrix/genética , Encéfalo/fisiologia , Técnicas de Transferência de Genes , Neurônios , Vetores Genéticos/genética
9.
Res Sq ; 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36789432

RESUMO

Adeno-associated viruses (AAVs) promise robust gene delivery to the brain through non-invasive, intravenous delivery. However, unlike in rodents, few neurotropic AAVs efficiently cross the blood-brain barrier in non-human primates (NHPs). Here we describe AAV.CAP-Mac, an engineered variant identified by screening in adult marmosets and newborn macaques with improved efficiency in the brain of multiple NHP species: marmoset, rhesus macaque, and green monkey. CAP-Mac is neuron-biased in infant Old World primates, exhibits broad tropism in adult rhesus macaques, and is vasculature-biased in adult marmosets. We demonstrate applications of a single, intravenous dose of CAP-Mac to deliver (1) functional GCaMP for ex vivo calcium imaging across multiple brain areas, and (2) a cocktail of fluorescent reporters for Brainbow-like labeling throughout the macaque brain, circumventing the need for germline manipulations in Old World primates. Given its capabilities for systemic gene transfer in NHPs, CAP-Mac promises to help unlock non-invasive access to the brain.

10.
Neuron ; 110(14): 2242-2257.e6, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35643078

RESUMO

Gene therapy offers great promise in addressing neuropathologies associated with the central and peripheral nervous systems (CNS and PNS). However, genetic access remains difficult, reflecting the critical need for the development of effective and non-invasive gene delivery vectors across species. To that end, we evolved adeno-associated virus serotype 9 (AAV9) capsid in mice and validated two capsids, AAV-MaCPNS1 and AAV-MaCPNS2, across rodent species (mice and rats) and non-human primate (NHP) species (marmosets and rhesus macaques). Intravenous administration of either AAV efficiently transduced the PNS in rodents and both the PNS and CNS in NHPs. Furthermore, we used AAV-MaCPNS1 in mice to systemically deliver the following: (1) the neuronal sensor jGCaMP8s to record calcium signal dynamics in nodose ganglia and (2) the neuronal actuator DREADD to dorsal root ganglia to mediate pain. This conclusively demonstrates the translatability of these two systemic AAVs across four species and their functional utility through proof-of-concept studies in mice.


Assuntos
Vetores Genéticos , Roedores , Animais , Sistema Nervoso Central , Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética , Macaca mulatta/genética , Camundongos , Ratos , Roedores/genética , Transdução Genética
11.
Curr Biol ; 32(15): 3423-3428.e3, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35750054

RESUMO

A foundational pressure in the evolution of all animals is the ability to travel through the world, inherently coupling the sensory and motor systems. While this relationship has been explored in several species,1-4 it has been largely overlooked in primates, which have typically relied on paradigms in which head-restrained subjects view stimuli on screens.5 Natural visual behaviors, by contrast, are typified by locomotion through the environment guided by active sensing as animals explore and interact with the world,4,6 a relationship well illustrated by prey capture.7-12 Here, we characterized prey capture in wild marmoset monkeys as they negotiated their dynamic, arboreal habitat to illustrate the inherent role of vision as an active process in natural nonhuman primate behavior. Not only do marmosets share the core properties of vision that typify the primate Order,13-18 but they are prolific hunters that prey on a diverse set of prey animals.19-22 Marmosets pursued prey using vision in several different contexts, but executed precise visually guided motor control that predominantly involved grasping with hands for successful capture of prey. Applying markerless tracking for the first time in wild primates yielded novel findings that precisely quantified how marmosets track insects prior to initiating an attack and the rapid visually guided corrections of the hands during capture. These findings offer the first detailed insight into the active nature of vision to guide multiple facets of a natural goal-directed behavior in wild primates and can inform future laboratory studies of natural primate visual behaviors and the supporting neural processes.


Assuntos
Callithrix , Visão Ocular , Animais , Mãos , Força da Mão , Humanos , Insetos , Comportamento Predatório
12.
Curr Biol ; 32(10): R482-R493, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35609550

RESUMO

The breadth and complexity of natural behaviors inspires awe. Understanding how our perceptions, actions, and internal thoughts arise from evolved circuits in the brain has motivated neuroscientists for generations. Researchers have traditionally approached this question by focusing on stereotyped behaviors, either natural or trained, in a limited number of model species. This approach has allowed for the isolation and systematic study of specific brain operations, which has greatly advanced our understanding of the circuits involved. At the same time, the emphasis on experimental reductionism has left most aspects of the natural behaviors that have shaped the evolution of the brain largely unexplored. However, emerging technologies and analytical tools make it possible to comprehensively link natural behaviors to neural activity across a broad range of ethological contexts and timescales, heralding new modes of neuroscience focused on natural behaviors. Here we describe a three-part roadmap that aims to leverage the wealth of behaviors in their naturally occurring distributions, linking their variance with that of underlying neural processes to understand how the brain is able to successfully navigate the everyday challenges of animals' social and ecological landscapes. To achieve this aim, experimenters must harness one challenge faced by all neurobiological systems, namely variability, in order to gain new insights into the language of the brain.


Assuntos
Encéfalo , Neurociências , Animais , Idioma
13.
PLoS Biol ; 17(12): e3000546, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31815940

RESUMO

The hippocampus comprises two neural signals-place cells and θ oscillations-that contribute to facets of spatial navigation. Although their complementary relationship has been well established in rodents, their respective contributions in the primate brain during free navigation remains unclear. Here, we recorded neural activity in the hippocampus of freely moving marmosets as they naturally explored a spatial environment to more explicitly investigate this issue. We report place cells in marmoset hippocampus during free navigation that exhibit remarkable parallels to analogous neurons in other mammalian species. Although θ oscillations were prevalent in the marmoset hippocampus, the patterns of activity were notably different than in other taxa. This local field potential oscillation occurred in short bouts (approximately .4 s)-rather than continuously-and was neither significantly modulated by locomotion nor consistently coupled to place-cell activity. These findings suggest that the relationship between place-cell activity and θ oscillations in primate hippocampus during free navigation differs substantially from rodents and paint an intriguing comparative picture regarding the neural basis of spatial navigation across mammals.


Assuntos
Callithrix/fisiologia , Hipocampo/fisiologia , Navegação Espacial/fisiologia , Animais , Feminino , Hipocampo/citologia , Locomoção , Imageamento por Ressonância Magnética/veterinária , Masculino , Neurônios/fisiologia , Percepção Espacial/fisiologia
14.
Neuron ; 104(1): 87-99, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31600518

RESUMO

Vocal learning is a behavioral trait in which the social and acoustic environment shapes the vocal repertoire of individuals. Over the past century, the study of vocal learning has progressed at the intersection of ecology, physiology, neuroscience, molecular biology, genomics, and evolution. Yet, despite the complexity of this trait, vocal learning is frequently described as a binary trait, with species being classified as either vocal learners or vocal non-learners. As a result, studies have largely focused on a handful of species for which strong evidence for vocal learning exists. Recent studies, however, suggest a continuum in vocal learning capacity across taxa. Here, we further suggest that vocal learning is a multi-component behavioral phenotype comprised of distinct yet interconnected modules. Discretizing the vocal learning phenotype into its constituent modules would facilitate integration of findings across a wider diversity of species, taking advantage of the ways in which each excels in a particular module, or in a specific combination of features. Such comparative studies can improve understanding of the mechanisms and evolutionary origins of vocal learning. We propose an initial set of vocal learning modules supported by behavioral and neurobiological data and highlight the need for diversifying the field in order to disentangle the complexity of the vocal learning phenotype.


Assuntos
Percepção Auditiva , Feedback Formativo , Aprendizagem , Vocalização Animal , Jacarés e Crocodilos , Animais , Comportamento Animal , Aves , Compreensão , Peixes , Comportamento Imitativo , Macaca , Fenótipo , Phoca
15.
Front Behav Neurosci ; 13: 12, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30787871

RESUMO

Neuroscience is enjoying a renaissance of discovery due in large part to the implementation of next-generation molecular technologies. The advent of genetically encoded tools has complemented existing methods and provided researchers the opportunity to examine the nervous system with unprecedented precision and to reveal facets of neural function at multiple scales. The weight of these discoveries, however, has been technique-driven from a small number of species amenable to the most advanced gene-editing technologies. To deepen interpretation and build on these breakthroughs, an understanding of nervous system evolution and diversity are critical. Evolutionary change integrates advantageous variants of features into lineages, but is also constrained by pre-existing organization and function. Ultimately, each species' neural architecture comprises both properties that are species-specific and those that are retained and shared. Understanding the evolutionary history of a nervous system provides interpretive power when examining relationships between brain structure and function. The exceptional diversity of nervous systems and their unique or unusual features can also be leveraged to advance research by providing opportunities to ask new questions and interpret findings that are not accessible in individual species. As new genetic and molecular technologies are added to the experimental toolkits utilized in diverse taxa, the field is at a key juncture to revisit the significance of evolutionary and comparative approaches for next-generation neuroscience as a foundational framework for understanding fundamental principles of neural function.

16.
J Cogn Neurosci ; 31(9): 1318-1328, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30513042

RESUMO

The core functional organization of the primate brain is remarkably conserved across the order, but behavioral differences evident between species likely reflect derived modifications in the underlying neural processes. Here, we performed the first study to directly compare visual recognition memory in two primate species-rhesus macaques and marmoset monkeys-on the same visual preferential looking task as a first step toward identifying similarities and differences in this cognitive process across the primate phylogeny. Preferences in looking behavior on the task were broadly similar between the species, with greater looking times for novel images compared with repeated images as well as a similarly strong preference for faces compared with other categories. Unexpectedly, we found large behavioral differences among the two species in looking behavior independent of image familiarity. Marmosets exhibited longer looking times, with greater variability compared with macaques, regardless of image content or familiarity. Perhaps most strikingly, marmosets shifted their gaze across the images more quickly, suggesting a different behavioral strategy when viewing images. Although such differences limit the comparison of recognition memory across these closely related species, they point to interesting differences in the mechanisms underlying active vision that have significant implications for future neurobiological investigations with these two nonhuman primate species. Elucidating whether these patterns are reflective of species or broader phylogenetic differences (e.g., between New World and Old World monkeys) necessitates a broader sample of primate taxa from across the Order.


Assuntos
Callithrix/psicologia , Macaca mulatta/psicologia , Reconhecimento Visual de Modelos , Reconhecimento Psicológico , Animais , Comportamento Exploratório , Movimentos Sacádicos , Especificidade da Espécie
17.
Anim Behav ; 136: 137-146, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37065636

RESUMO

In cooperatively breeding species, encounters with intruders may serve multiple functions ranging from reaffirming group territory ranges to facilitating assessments for additional breeding opportunities. While these distinctive events offer the opportunity to investigate the delicate balance of these social dimensions within animal societies, their unpredictable occurrence makes witnessing and controlling these events in the wild particularly challenging. Here we used a field playback approach to simulate conspecific territorial incursions in cooperatively breeding common marmosets (Callithrix jacchus) to distinguish between the three following non-mutually exclusive functions of intergroup encounters in this species of New World primate: territorial defense, mate defense, and assessment of breeding opportunities. For these experiments, we systematically broadcast species-typical long-distance contact calls - phees - commonly used in intergroup interactions from the core and periphery of the groups' territories using either male or female vocalizations. Consistent with a territorial defense hypothesis, a group's reaction was independent of the simulated intruder's sex and the response strength was greater when the playback stimulus was broadcast from the core areas of groups' territories relative to stimulus broadcast from periphery areas. However, sex differences in some facets of their responses suggest that this is not the only potential function for these encounters. Mated males and females started to move first in response to simulated intruders of the opposite sex, suggesting that these events offered opportunities to assess extra-pair breeding opportunities, while the occurrence of females' piloerection towards simulated female intruders is suggestive of mate-guarding. These data provide unique experimental evidence for the theory that excursions by conspecific intruders may serve multiple functions in a cooperatively breeding vertebrate and are reflective of the known complexities of common marmoset sociobiology.

18.
Neuroimage ; 162: 86-92, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28830766

RESUMO

The primate auditory cortex is organized into a network of anatomically and functionally distinct processing fields. Because of its tonotopic properties, the auditory core has been the main target of neurophysiological studies ranging from sensory encoding to perceptual decision-making. By comparison, the auditory belt has been less extensively studied, in part due to the fact that neurons in the belt areas prefer more complex stimuli and integrate over a wider frequency range than neurons in the core, which prefer pure tones of a single frequency. Complementary approaches, such as functional magnetic resonance imaging (fMRI), allow the anatomical identification of both the auditory core and belt and facilitate their functional characterization by rapidly testing a range of stimuli across multiple brain areas simultaneously that can be used to guide subsequent neural recordings. Bridging these technologies in primates will serve to further expand our understanding of primate audition. Here, we developed a novel preparation to test whether different areas of the auditory cortex could be identified using fMRI in common marmosets (Callithrix jacchus), a powerful model of the primate auditory system. We used two types of stimulation, band pass noise and pure tones, to parse apart the auditory core from surrounding secondary belt fields. In contrast to most auditory fMRI experiments in primates, we employed a continuous sampling paradigm to rapidly collect data with little deleterious effects. Here we found robust bilateral auditory cortex activation in two marmosets and unilateral activation in a third utilizing this preparation. Furthermore, we confirmed results previously reported in electrophysiology experiments, such as the tonotopic organization of the auditory core and regions activating preferentially to complex over simple stimuli. Overall, these data establish a key preparation for future research to investigate various functional properties of marmoset auditory cortex.


Assuntos
Córtex Auditivo/anatomia & histologia , Estimulação Acústica , Animais , Córtex Auditivo/fisiologia , Mapeamento Encefálico/métodos , Callithrix , Imageamento por Ressonância Magnética , Masculino
19.
J Neurosci ; 37(29): 7036-7047, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28630255

RESUMO

Communication is an inherently interactive process that weaves together the fabric of both human and nonhuman primate societies. To investigate the properties of the primate brain during active social signaling, we recorded the responses of frontal cortex neurons as freely moving marmosets engaged in conversational exchanges with a visually occluded virtual marmoset. We found that small changes in firing rate (∼1 Hz) occurred across a broadly distributed population of frontal cortex neurons when marmosets heard a conspecific vocalization, and that these changes corresponded to subjects' likelihood of producing or withholding a vocal reply. Although the contributions of individual neurons were relatively small, large populations of neurons were able to clearly distinguish between these social contexts. Most significantly, this social context-dependent change in firing rate was evident even before subjects heard the vocalization, indicating that the probability of a conversational exchange was determined by the state of the frontal cortex at the time a vocalization was heard, and not by a decision driven by acoustic characteristics of the vocalization. We found that changes in neural activity scaled with the length of the conversation, with greater changes in firing rate evident for longer conversations. These data reveal specific and important facets of this neural activity that constrain its possible roles in active social signaling, and we hypothesize that the close coupling between frontal cortex activity and this natural, active primate social-signaling behavior facilitates social-monitoring mechanisms critical to conversational exchanges.SIGNIFICANCE STATEMENT We provide evidence for a novel pattern of neural activity in the frontal cortex of freely moving, naturally behaving, marmoset monkeys that may facilitate natural primate conversations. We discovered small (∼1 Hz), but reliable, changes in neural activity that occurred before marmosets even heard a conspecific vocalization that, as a population, almost perfectly predicted whether subjects would produce a vocalization in response. The change in the state of the frontal cortex persisted throughout the conversation and its magnitude scaled linearly with the length of the interaction. We hypothesize that this social context-dependent change in frontal cortex activity is supported by several mechanisms, such as social arousal and attention, and facilitates social monitoring critical for vocal coordination characteristic of human and nonhuman primate conversations.


Assuntos
Comportamento Animal/fisiologia , Callithrix/fisiologia , Lobo Frontal/fisiologia , Comportamento Social , Vocalização Animal/fisiologia , Comunicação Animal , Animais , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...