Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
J Radiol Prot ; 44(2)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38636477

RESUMO

National Council on Radiation Protection and Measurements Commentary No. 33 'Recommendations for Stratification of Equipment Use and Radiation Safety Training for Fluoroscopy' defines an evidence-based, radiation risk classification for fluoroscopically guided procedures (FGPs), provides radiation-related recommendations for the types of fluoroscopes suitable for each class of procedure, and indicates the extent and content of training that ought to be provided to different categories of facility staff who might enter a room where fluoroscopy is or may be performed. For FGP, radiation risk is defined by the type and likelihood of radiation hazards that could be incurred by a patient undergoing a FGP. The Commentary also defines six training groups of facility staff based on their role in the fluoroscopy room. The training groups are based on a combination of job descriptions and the procedures in which these individuals might be involved. The Commentary recommends the extent and content of training that should be provided to each of these training groups. It also provides recommendations on training formats, training frequency, and methods for demonstrating that the learner has acquired the necessary knowledge.


Assuntos
Proteção Radiológica , Fluoroscopia , Humanos , Exposição Ocupacional/prevenção & controle , Lesões por Radiação/prevenção & controle
2.
J Vasc Interv Radiol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599279

RESUMO

PURPOSE: To summarize dose trends from 1980 to 2020 for 19,651 U.S. Radiologic Technologists who reported assisting with fluoroscopically guided interventional procedures (FGIPs), overall and by work history characteristics. MATERIALS AND METHODS: A total of 762,310 annual personal dose equivalents at a 10-mm reference depth (doses) during 1980-2020 for 43,823 participants of the U.S. Radiologic Technologists (USRT) cohort who responded to work history questionnaires administered during 2012-2014 were summarized. This population included 19,651 technologists who reported assisting with FGIP (≥1 time per month for ≥12 consecutive months) at any time during the study period. Doses corresponding to assistance with FGIP were estimated in terms of proximity to patients, monthly procedure frequency, and procedure type. Box plots and summary statistics (eg, medians and percentiles) were used to describe annual doses and dose trends. RESULTS: Median annual dose corresponding to assistance with FGIP was 0.65 mSv (interquartile range [IQR], 0.60-1.40 mSv; 95th percentile, 6.80). Higher occupational doses with wider variability were associated with close proximity to patients during assistance with FGIP (median, 1.20 mSv [IQR, 0.60-4.18 mSv]; 95th percentile, 12.66), performing ≥20 FGIPs per month (median, 0.75 mSv [IQR, 0.60-2.40 mSv]; 95th percentile, 9.44), and assisting with high-dose FGIP (median, 0.70 mSv [IQR, 0.60-1.90 mSv]; 95th percentile, 8.30). CONCLUSIONS: Occupational doses corresponding to assistance with FGIP were generally low but varied with exposure frequency, procedure type, and proximity to patients. These results highlight the need for vigilant dose monitoring, radiation safety training, and proper protective equipment.

4.
J Vasc Interv Radiol ; 34(4): 544-555.e11, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36379286

RESUMO

PURPOSE: To update normative data on fluoroscopy dose indices in the United States for the first time since the Radiation Doses in Interventional Radiology study in the late 1990s. MATERIALS AND METHODS: The Dose Index Registry-Fluoroscopy pilot study collected data from March 2018 through December 2019, with 50 fluoroscopes from 10 sites submitting data. Primary radiation dose indices including fluoroscopy time (FT), cumulative air kerma (Ka,r), and kerma area product (PKA) were collected for interventional radiology fluoroscopically guided interventional (FGI) procedures. Clinical facility procedure names were mapped to the American College of Radiology (ACR) common procedure lexicon. Distribution parameters including the 10th, 25th, 50th, 75th, 95th, and 99th percentiles were computed. RESULTS: Dose indices were collected for 70,377 FGI procedures, with 50,501 ultimately eligible for analysis. Distribution parameters are reported for 100 ACR Common IDs. FT in minutes, Ka,r in mGy, and PKA in Gy-cm2 are reported in this study as (n; median) for select ACR Common IDs: inferior vena cava filter insertion (1,726; FT: 2.9; Ka,r: 55.8; PKA: 14.19); inferior vena cava filter removal (464; FT: 5.7; Ka,r: 178.6; PKA: 34.73); nephrostomy placement (2,037; FT: 4.1; Ka,r: 39.2; PKA: 6.61); percutaneous biliary drainage (952; FT: 12.4; Ka,r: 160.5; PKA: 21.32); gastrostomy placement (1,643; FT: 3.2; Ka,r: 29.1; PKA: 7.29); and transjugular intrahepatic portosystemic shunt placement (327; FT: 34.8; Ka,r: 813.0; PKA: 181.47). CONCLUSIONS: The ACR DIR-Fluoro pilot has provided state-of-the-practice statistics for radiation dose indices from IR FGI procedures. These data can be used to prioritize procedures for radiation optimization, as demonstrated in this work.


Assuntos
Radiografia Intervencionista , Radiologia Intervencionista , Humanos , Doses de Radiação , Projetos Piloto , Fluoroscopia , Radiologia Intervencionista/métodos , Sistema de Registros , Radiografia Intervencionista/efeitos adversos
5.
J Vasc Interv Radiol ; 34(4): 556-562.e3, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36031041

RESUMO

PURPOSE: To compare radiation dose index distributions for fluoroscopically guided interventions in interventional radiology from the American College of Radiology (ACR) Fluoroscopy Dose Index Registry (DIR-Fluoro) pilot to those from the Radiation Doses in Interventional Radiology (RAD-IR) study. MATERIALS AND METHODS: Individual and grouped ACR Common identification numbers (procedure types) from the DIR-Fluoro pilot were matched to procedure types in the RAD-IR study. Fifteen comparisons were made. Distribution parameters, including the 10th, 25th, 50th, 75th, and 95th percentiles, were compared for fluoroscopy time (FT), cumulative air kerma (Ka,r), and kerma area product (PKA). Two derived indices were computed using median dose indices. The procedure-averaged reference air kerma rate (Ka,r¯) was computed as Ka,r / FT. The procedure-averaged x-ray field size at the reference point (Ar) was computed as PKA / (Ka,r × 1,000). RESULTS: The median FT was equally likely to be higher or lower in the DIR-Fluoro pilot as it was in the RAD-IR study, whereas the maximum FT was almost twice as likely to be higher in the DIR-Fluoro pilot than it was in the RAD-IR study. The median Ka,r was lower in the DIR-Fluoro pilot for all procedures, as was median PKA. The maximum Ka,r and PKA were more often higher in the DIR-Fluoro pilot than in the RAD-IR study. Ka,r¯ followed the same pattern as Ka,r, whereas Ar was often greater in DIR-Fluoro. CONCLUSIONS: The median dose indices have decreased since the RAD-IR study. The typical Ka,r rates are lower, a result of the use of lower default dose rates. However, opportunities for quality improvement exist, including renewed focus on tight collimation of the imaging field of view.


Assuntos
Radiografia Intervencionista , Radiologia Intervencionista , Humanos , Radiologia Intervencionista/métodos , Doses de Radiação , Fluoroscopia , Radiografia Intervencionista/efeitos adversos , Sistema de Registros
6.
Eur J Radiol ; 155: 110468, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35973303

RESUMO

PURPOSE: To obtain clinicians' views of the need to account for radiation exposure from previous CT scans and the advisability of a regulatory mechanism to control the number of CT scans for an individual patient. METHODS: A convenience survey was conducted by emailing a link to a three-question electronic survey to clinicians in many countries, mostly through radiology and radiation protection contacts. RESULTS: 505 responses were received from 24 countries. 293 respondents (58%) understand that current regulations do not limit the number of CT scans that can be prescribed for a single patient in a year. When asked whether there should be a regulation to limit the number of CT scans that can be prescribed for a single patient in one year, only a small fraction (143, 28%) answered 'No', 182 (36%) answered 'Maybe' and 166 (33%) answered 'Yes'. Most respondents (337; 67%) think that radiation risk should form part of the consideration when deciding whether to request a CT exam. A minority (138; 27%) think the decision should be based only on the medical indication for the CT exam. Comparison among the 4 countries (South Korea, Hungary, USA and Canada) with the largest number of respondents indicated wide variations in responses. CONCLUSIONS: A majority of the surveyed clinicians consider radiation risk, in addition to clinical factors, when prescribing CT exams. Most respondents are in favor of, or would consider, regulation to control the number of CT scans that could be performed on a patient annually.


Assuntos
Exposição à Radiação , Proteção Radiológica , Radiologia , Humanos , Doses de Radiação , Tomografia Computadorizada por Raios X/efeitos adversos
8.
Br J Radiol ; 94(1126): 20210373, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33989043

RESUMO

The U.S. Food and Drug Administration (FDA) has been concerned with minimizing the unnecessary radiation exposure of people for half a century. Manufacturers of medical X-ray imaging devices are important partners in this effort. Medical X-ray imaging devices are regulated by FDA under both its electronic product regulations andits medical device regulations. FDA also publishes guidance documents that represent FDA's current thinking on a topic and provide a suggested or recommended approach to meet the requirements of a regulation or statute. FDA encourages manufacturers to develop medical devices that conform to voluntary consensus standards. Use of these standards is a central element of FDA's system to ensure that all medical devices marketed in the U.S. meet safety and effectiveness requirements. FDA staff participate actively in the development and maintenance of these standards, often advancing or introducing new safety and dose management requirements. Use of voluntary consensus standards reduces the amount of time necessary to evaluate a premarket submission and reduces the burden on manufacturers. FDA interacts with industry and other stakeholders through meetings with industry groups, public meetings, public communications, and through the development of voluntary consensus standards. In these interactions, FDA staff introduce new concepts for improving the safety of these devices and provide support for similar initiatives from professional organizations. FDA works with all stakeholders to achieve its mission of protecting and promoting the public health.


Assuntos
Diagnóstico por Imagem/instrumentação , Diagnóstico por Imagem/normas , Segurança de Equipamentos/normas , Doses de Radiação , Proteção Radiológica/normas , United States Food and Drug Administration , Aprovação de Equipamentos/legislação & jurisprudência , Aprovação de Equipamentos/normas , Humanos , Proteção Radiológica/legislação & jurisprudência , Estados Unidos , Raios X
9.
Cardiovasc Intervent Radiol ; 44(6): 849-856, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33184693

RESUMO

The article is part of the series of articles on radiation protection. You can find further articles in the special section of the CVIR issue. In addition to the risks from fluoroscopic-guided interventional procedures of tissue injuries, recent studies have drawn attention to the risk of stochastic effects. Guidelines exist for preprocedural planning and radiation management during the procedure. The concept of a substantial radiation dose level (SRDL) is helpful for patient follow-up for tissue injury. The uncommon nature of tissue injuries requires the interventionalist to be responsible for follow-up of patients who receive substantial radiation doses. Dose management systems for recognizing and avoiding higher patient exposures have been introduced. The European Directive provides a legal framework and requirements for equipment, training, dose monitoring, recording and optimization that are helpful in radiation risk management.


Assuntos
Doses de Radiação , Proteção Radiológica/métodos , Radiografia Intervencionista/métodos , Fluoroscopia , Humanos
10.
Radiology ; 295(2): 418-427, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32181730

RESUMO

Background Comprehensive assessments of the frequency and associated doses from radiologic and nuclear medicine procedures are rarely conducted. The use of these procedures and the population-based radiation dose increased remarkably from 1980 to 2006. Purpose To determine the change in per capita radiation exposure in the United States from 2006 to 2016. Materials and Methods The U.S. National Council on Radiation Protection and Measurements conducted a retrospective assessment for 2016 and compared the results to previously published data for the year 2006. Effective dose values for procedures were obtained from the literature, and frequency data were obtained from commercial, governmental, and professional society data. Results In the United States in 2006, an estimated 377 million diagnostic and interventional radiologic examinations were performed. This value remained essentially the same for 2016 even though the U.S. population had increased by about 24 million people. The number of CT scans performed increased from 67 million to 84 million, but the number of other procedures (eg, diagnostic fluoroscopy) and nuclear medicine procedures decreased from 17 million to 13.5 million. The number of dental radiographic and dental CT examinations performed was estimated to be about 320 million in 2016. Using the tissue-weighting factors from Publication 60 of the International Commission on Radiological Protection, the U.S. annual individual (per capita) effective dose from diagnostic and interventional medical procedures was estimated to have been 2.9 mSv in 2006 and 2.3 mSv in 2016, with the collective doses being 885 000 and 755 000 person-sievert, respectively. Conclusion The trend from 1980 to 2006 of increasing dose from medical radiation has reversed. Estimated 2016 total collective effective dose and radiation dose per capita dose are lower than in 2006. © RSNA, 2020 See also the editorial by Einstein in this issue.


Assuntos
Diagnóstico por Imagem , Medicina Nuclear/estatística & dados numéricos , Exposição à Radiação/estatística & dados numéricos , Radiometria/estatística & dados numéricos , Carga Corporal (Radioterapia) , Fluoroscopia , Humanos , Órgãos em Risco/efeitos da radiação , Doses de Radiação , Radiografia Intervencionista , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Estados Unidos
12.
Med Phys ; 47(3): 975-982, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31880815

RESUMO

PURPOSE: To provide current data on average air kerma-area product (PKA ) and effective dose (E) for noncardiac interventional fluoroscopy procedures and suggested values of dose coefficients (DCE ) for conversion of PKA to estimates of effective dose. METHODS: A PubMed literature search covering the time period from 2006 to August 2019 was performed to obtain recent data on PKA , E and DCE for interventional fluoroscopy procedures. RESULTS: There is very wide variation in the reported values of PKA , E, and DCE in the literature. A number of factors are involved in this variability and the resultant uncertainty in average values of these dose quantities. CONCLUSIONS: The values of PKA , average E and suggested DCE presented here can be of use for comparison of the radiation detriment from different procedures and may be useful for categorizing detriment within an order of magnitude or so. They do not represent actual or expected radiation dose or detriment from any specific procedure or for a specific patient and should be not be used as such.


Assuntos
Fluoroscopia/métodos , Doses de Radiação , Radiografia Intervencionista/métodos , Ar , Humanos , Incerteza
13.
Med Phys ; 46(12): 5562-5571, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31419320

RESUMO

PURPOSE: To provide an overview of the types of adverse events reported to the US Food and Drug Administration (US FDA) for magnetic resonance (MR) systems over a 10-yr period. METHODS: Two reviewers independently reviewed adverse events reported to FDA for MR systems from 1 January 2008 to 31 December 2017 and manually categorized events into eight event types. Thermal events were further subcategorized by probable cause. Objects that became projectiles were also categorized. RESULTS: FDA received 1568 adverse event reports for MR systems between 1 January 2008 and 31 December 2017. This analysis included 1548 reports. Thermal events were the most commonly reported serious injury (59% of analyzed reports). Mechanical events - defined as slips, falls, crush injuries, broken bones, and cuts; musculoskeletal injuries from lifting or movement of the device - (11%), projectile events (9%), and acoustic events (6%) were also observed. CONCLUSIONS: Adverse events related to MR systems consistent with the known hazards of the MR environment continue to be reported to FDA. Increased awareness of the types of adverse events occurring for MR imaging systems is important for prevention.


Assuntos
Imageamento por Ressonância Magnética/efeitos adversos , Relatório de Pesquisa , United States Food and Drug Administration/estatística & dados numéricos , Humanos , Estados Unidos , United States Food and Drug Administration/legislação & jurisprudência
14.
Occup Environ Med ; 76(5): 317-325, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30890565

RESUMO

OBJECTIVES: To assess radiation exposure-related work history and risk of cataract and cataract surgery among radiologic technologists assisting with fluoroscopically guided interventional procedures (FGIP). METHODS: This retrospective study included 35 751 radiologic technologists who reported being cataract-free at baseline (1994-1998) and completed a follow-up questionnaire (2013-2014). Frequencies of assisting with 21 types of FGIP and use of radiation protection equipment during five time periods (before 1970, 1970-1979, 1980-1989, 1990-1999, 2000-2009) were derived from an additional self-administered questionnaire in 2013-2014. Multivariable-adjusted relative risks (RRs) for self-reported cataract diagnosis and cataract surgery were estimated according to FGIP work history. RESULTS: During follow-up, 9372 technologists reported incident physician-diagnosed cataract; 4278 of incident cases reported undergoing cataract surgery. Technologists who ever assisted with FGIP had increased risk for cataract compared with those who never assisted with FGIP (RR: 1.18, 95% CI 1.11 to 1.25). Risk increased with increasing cumulative number of FGIP; the RR for technologists who assisted with >5000 FGIP compared with those who never assisted was 1.38 (95% CI 1.24 to 1.53; p trend <0.001). These associations were more pronounced for FGIP when technologists were located ≤3 feet (≤0.9 m) from the patient compared with >3 feet (>0.9 m) (RRs for >5000 at ≤3 feet vs never FGIP were 1.48, 95% CI 1.27 to 1.74 and 1.15, 95% CI 0.98 to 1.35, respectively; pdifference=0.04). Similar risks, although not statistically significant, were observed for cataract surgery. CONCLUSION: Technologists who reported assisting with FGIP, particularly high-volume FGIP within 3 feet of the patient, had increased risk of incident cataract. Additional investigation should evaluate estimated dose response and medically validated cataract type.


Assuntos
Catarata/diagnóstico , Diagnóstico por Imagem/efeitos adversos , Medição de Risco/normas , Adulto , Catarata/epidemiologia , Estudos de Coortes , Diagnóstico por Imagem/estatística & dados numéricos , Feminino , Fluoroscopia/efeitos adversos , Fluoroscopia/métodos , Fluoroscopia/estatística & dados numéricos , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Medição de Risco/métodos , Medição de Risco/estatística & dados numéricos , Fatores de Risco , Inquéritos e Questionários
15.
Health Phys ; 114(2): 251-253, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30086025

RESUMO

Program Area Committee 4 (PAC 4) addresses radiation protection issues in health care environments. Reports from two scientific committees (SC 4-5 and SC 4-7) are soon to be released and have entered council review, respectively. A report from SC 4-8 will be submitted for PAC 4 review in July 2017. Five additional proposals for potential PAC 4 publications are under consideration.


Assuntos
Medicina , Doenças Profissionais/prevenção & controle , Guias de Prática Clínica como Assunto/normas , Monitoramento de Radiação/normas , Proteção Radiológica/normas , Gestão da Segurança , Sociedades Científicas/organização & administração , Humanos , Fatores de Risco
16.
Artigo em Inglês | MEDLINE | ID: mdl-29667719

RESUMO

Over the past 30 years, the advent of fluoroscopically guided interventional procedures has resulted in dramatic increments in both X-ray exposure and physical demands that predispose interventionists to distinct occupational health hazards. The hazards of accumulated radiation exposure have been known for years, but until recently the other potential risks have been ill-defined and under-appreciated. The physical stresses inherent in this career choice appear to be associated with a predilection to orthopedic injuries, attributable in great part to the cumulative adverse effects of bearing the weight and design of personal protective apparel worn to reduce radiation risk and to the poor ergonomic design of interventional suites. These occupational health concerns pertain to cardiologists, radiologists and surgeons working with fluoroscopy, pain management specialists performing nonvascular fluoroscopic procedures, and the many support personnel working in these environments. This position paper is the work of representatives of the major societies of physicians who work in the interventional laboratory environment, and has been formally endorsed by all. In this paper, the available data delineating the prevalence of these occupational health risks is reviewed and ongoing epidemiological studies designed to further elucidate these risks are summarized. The main purpose is to publicly state speaking with a single voice that the interventional laboratory poses workplace hazards that must be acknowledged, better understood and mitigated to the greatest extent possible, and to advocate vigorously on behalf of efforts to reduce these hazards. Interventional physicians and their professional societies, working together with industry, should strive toward the ultimate zero radiation exposure work environment that would eliminate the need for personal protective apparel and prevent its orthopedic and ergonomic consequences. © 2008 Wiley-Liss, Inc.

17.
Tech Vasc Interv Radiol ; 21(1): 37-42, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29471999

RESUMO

This review describes the basic concepts and methods for optimization of occupational dose in the interventional suite. In fluoroscopy, the source of virtually all radiation exposure to the operator is scattered radiation from the patient. All other things being equal, reducing patient radiation dose will reduce operator and staff dose. Most tools and methods of occupational radiation protection are entirely operator dependent. These methods must be used routinely and properly to be effective. Your occupational dose depends on how well you follow good radiation protection practices and on the kinds of procedures you do. The only way to know your own occupational dose is to wear your dosimeters for every case. If proper protection practices are followed and appropriate protection tools are used, annual effective dose for an interventionalist should be well below 10mSv/y, and will more likely be in the range of 2-4mSv/y. However, if proper protection practices and tools are not used, annual effective doses may be much higher. You should review your own doses periodically.


Assuntos
Atitude do Pessoal de Saúde , Hábitos , Conhecimentos, Atitudes e Prática em Saúde , Exposição Ocupacional/prevenção & controle , Traumatismos Ocupacionais/prevenção & controle , Exposição à Radiação/prevenção & controle , Lesões por Radiação/prevenção & controle , Proteção Radiológica/métodos , Radiologia Intervencionista , Comportamentos Relacionados com a Saúde , Humanos , Descrição de Cargo , Exposição Ocupacional/efeitos adversos , Saúde Ocupacional , Traumatismos Ocupacionais/etiologia , Fatores de Proteção , Doses de Radiação , Exposição à Radiação/efeitos adversos , Lesões por Radiação/etiologia , Fatores de Risco , Recursos Humanos
19.
Health Phys ; 113(6): 458-473, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28968349

RESUMO

This study summarizes and compares estimates of radiation absorbed dose to the thyroid gland for typical patients who underwent diagnostic radiology examinations in the years from 1930 to 2010. The authors estimated the thyroid dose for common examinations, including radiography, mammography, dental radiography, fluoroscopy, nuclear medicine, and computed tomography (CT). For the most part, a clear downward trend in thyroid dose over time for each procedure was observed. Historically, the highest thyroid doses came from the nuclear medicine thyroid scans in the 1960s (630 mGy), full-mouth series dental radiography (390 mGy) in the early years of the use of x rays in dentistry (1930s), and the barium swallow (esophagram) fluoroscopic exam also in the 1930s (140 mGy). Thyroid uptake nuclear medicine examinations and pancreatic scans also gave relatively high doses to the thyroid (64 mGy and 21 mGy, respectively, in the 1960s). In the 21st century, the highest thyroid doses still result from nuclear medicine thyroid scans (130 mGy), but high thyroid doses are also associated with chest/abdomen/pelvis CT scans (18 and 19 mGy for males and females, respectively). Thyroid doses from CT scans did not exhibit the same downward trend as observed for other examinations. The largest thyroid doses from conventional radiography came from cervical spine and skull examinations. Thyroid doses from mammography (which began in the 1960s) were generally a fraction of 1 mGy. The highest average doses to the thyroid from mammography were about 0.42 mGy, with modestly larger doses associated with imaging of breasts with large compressed thicknesses. Thyroid doses from dental radiographic procedures have decreased markedly throughout the decades, from an average of 390 mGy for a full-mouth series in the 1930s to an average of 0.31 mGy today. Upper GI series fluoroscopy examinations resulted in up to two orders of magnitude lower thyroid doses than the barium swallow. There are considerable uncertainties associated with the presented doses, particularly for characterizing exposures of individual identified patients. Nonetheless, the tabulations provide the only comprehensive report on the estimation of typical radiation doses to the thyroid gland from medical diagnostic procedures over eight decades (1930-2010). These data can serve as a resource for epidemiologic studies that evaluate the late health effects of radiation exposure associated with diagnostic radiologic examinations.


Assuntos
Técnicas de Diagnóstico por Radioisótopos , Exposição à Radiação/efeitos adversos , Radiologia , Glândula Tireoide/diagnóstico por imagem , Glândula Tireoide/efeitos da radiação , Feminino , Humanos , Masculino , Doses de Radiação , Fatores de Tempo
20.
AJR Am J Roentgenol ; 208(6): 1278-1284, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28350475

RESUMO

OBJECTIVE: Childhood exposure to acute, high-dose radiation has consistently been associated with risk of benign and malignant intracranial tumors of the brain and CNS, but data on risks of adulthood exposure to protracted, low-to-moderate doses of radiation are limited. In a large cohort of radiologic technologists, we quantified the association between protracted, low-to-moderate doses of radiation and malignant intracranial tumor mortality. MATERIALS AND METHODS: The study population included 83,655 female and 26,642 male U.S. radiologic technologists who were certified for at least 2 years as of 1982. The cohort was followed from the completion date of the first or second survey (1983-1989 or 1994-1998) to the date of death, loss to follow-up, or December 31, 2012, whichever was earliest. Occupational brain doses through 1997 were based on work history, historical data, and, for most years after the mid 1970s, individual film badge measurements. Radiation-related excess relative risks (ERRs) and 95% CIs were estimated from Poisson regression models adjusted for attained age and sex. RESULTS: Cumulative mean absorbed brain dose was 12 mGy (range, 0-290 mGy). During follow-up (median, 26.7 years), 193 technologists died of a malignant intracranial neoplasm. Based on models incorporating a 5-year lagged cumulative brain dose, cumulative brain dose was not associated with malignant intracranial tumor mortality (overall ERR per 100 mGy, 0.1; 95% CI, < -0.3 to 1.5). No effect modification was observed by sex or birth cohort. CONCLUSION: In this nationwide cohort of radiologic technologists, cumulative occupational radiation exposure to the brain was not associated with malignant intracranial tumor mortality.


Assuntos
Pessoal Técnico de Saúde/estatística & dados numéricos , Neoplasias Induzidas por Radiação/mortalidade , Doenças Profissionais/mortalidade , Exposição Ocupacional/estatística & dados numéricos , Exposição à Radiação/estatística & dados numéricos , Tecnologia Radiológica/estatística & dados numéricos , Adulto , Idoso , Pessoal Técnico de Saúde/tendências , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Doses de Radiação , Fatores de Risco , Taxa de Sobrevida , Tecnologia Radiológica/tendências , Estados Unidos/epidemiologia , Recursos Humanos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...