Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Phys Chem Chem Phys ; 22(36): 20303-20310, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32966448

RESUMO

One of the fundamental goals of chemistry is to determine how molecular structure influences interactions and leads to different reaction products. Studies of isomer-selected and resolved chemical reactions can shed light directly on how form leads to function. In the following, we present the results of gas-phase reactions between acetylene cations (C2D2+) with two different isomers of C3H4: propyne (DC3D3) and allene (H2C3H2). Our highly controlled, trapped-ion environment allows for precise determination of reaction products and kinetics. From these results, we can infer details of the underlying reaction dynamics of C2H2+ + C3H4. Through the synergy of experimental results and high-level quantum chemical potential energy surface calculations, we are able to identify distinct reaction mechanisms for the two isomers. We find long-range charge exchange with no complex formation is favored for allene, whereas charge exchange leads to an intermediate reaction complex for propyne and thus, different products. Therefore, this reaction displays a pronounced isomer-selective bi-molecular reactive process.

2.
Stat Interface ; 10(2): 313-341, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-37476472

RESUMO

Morphometric (i.e., shape and size) differences in the anatomy of cortical structures are associated with neurodevelopmental and neuropsychiatric disorders. Such differences can be quantized and detected by a powerful tool called Labeled Cortical Distance Map (LCDM). The LCDM method provides distances of labeled gray matter (GM) voxels from the GM/white matter (WM) surface for specific cortical structures (or tissues). Here we describe a method to analyze morphometric variability in the particular tissue using LCDM distances. To extract more of the information provided by LCDM distances, we perform pooling and censoring of LCDM distances. In particular, we employ Brown-Forsythe (BF) test of homogeneity of variance (HOV) on the LCDM distances. HOV analysis of pooled distances provides an overall analysis of morphometric variability of the LCDMs due to the disease in question, while the HOV analysis of censored distances suggests the location(s) of significant variation in these differences (i.e., at which distance from the GM/WM surface the morphometric variability starts to be significant). We also check for the influence of assumption violations on the HOV analysis of LCDM distances. In particular, we demonstrate that BF HOV test is robust to assumption violations such as the non-normality and within sample dependence of the residuals from the median for pooled and censored distances and are robust to data aggregation which occurs in analysis of censored distances. We recommend HOV analysis as a complementary tool to the analysis of distribution/location differences. We also apply the methodology on simulated normal and exponential data sets and assess the performance of the methods when more of the underlying assumptions are satisfied. We illustrate the methodology on a real data example, namely, LCDM distances of GM voxels in ventral medial prefrontal cortices (VMPFCs) to see the effects of depression or being of high risk to depression on the morphometry of VMPFCs. The methodology used here is also valid for morphometric analysis of other cortical structures.

3.
Rev Sci Instrum ; 88(12): 123107, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29289207

RESUMO

Trapping molecular ions that have been sympathetically cooled with laser-cooled atomic ions is a useful platform for exploring cold ion chemistry. We designed and characterized a new experimental apparatus for probing chemical reaction dynamics between molecular cations and neutral radicals at temperatures below 1 K. The ions are trapped in a linear quadrupole radio-frequency trap and sympathetically cooled by co-trapped, laser-cooled, atomic ions. The ion trap is coupled to a time-of-flight mass spectrometer to readily identify product ion species and to accurately determine trapped ion numbers. We discuss, and present in detail, the design of this ion trap time-of-flight mass spectrometer and the electronics required for driving the trap and mass spectrometer. Furthermore, we measure the performance of this system, which yields mass resolutions of m/Δm ≥ 1100 over a wide mass range, and discuss its relevance for future measurements in chemical reaction kinetics and dynamics.

4.
Med Phys ; 42(8): 4719-26, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26233199

RESUMO

PURPOSE: We previously developed a set of highly detailed 4D reference pediatric extended cardiac-torso (XCAT) phantoms at ages of newborn, 1, 5, 10, and 15 yr with organ and tissue masses matched to ICRP Publication 89 values. In this work, we extended this reference set to a series of 64 pediatric phantoms of varying age and height and body mass percentiles representative of the public at large. The models will provide a library of pediatric phantoms for optimizing pediatric imaging protocols. METHODS: High resolution positron emission tomography-computed tomography data obtained from the Duke University database were reviewed by a practicing experienced radiologist for anatomic regularity. The CT portion of the data was then segmented with manual and semiautomatic methods to form a target model defined using nonuniform rational B-spline surfaces. A multichannel large deformation diffeomorphic metric mapping algorithm was used to calculate the transform from the best age matching pediatric XCAT reference phantom to the patient target. The transform was used to complete the target, filling in the nonsegmented structures and defining models for the cardiac and respiratory motions. The complete phantoms, consisting of thousands of structures, were then manually inspected for anatomical accuracy. The mass for each major tissue was calculated and compared to linearly interpolated ICRP values for different ages. RESULTS: Sixty four new pediatric phantoms were created in this manner. Each model contains the same level of detail as the original XCAT reference phantoms and also includes parameterized models for the cardiac and respiratory motions. For the phantoms that were 10 yr old and younger, we included both sets of reproductive organs. This gave them the capability to simulate both male and female anatomy. With this, the population can be expanded to 92. Wide anatomical variation was clearly seen amongst the phantom models, both in organ shape and size, even for models of the same age and sex. The phantoms can be combined with existing simulation packages to generate realistic pediatric imaging data from different modalities. CONCLUSIONS: This work provides a large cohort of highly detailed pediatric phantoms with 4D capabilities of varying age, height, and body mass. The population of phantoms will provide a vital tool with which to optimize 3D and 4D pediatric imaging devices and techniques in terms of image quality and radiation-absorbed dose.


Assuntos
Imagens de Fantasmas , Adolescente , Algoritmos , Estatura , Criança , Pré-Escolar , Conjuntos de Dados como Assunto , Feminino , Genitália/diagnóstico por imagem , Coração/diagnóstico por imagem , Coração/fisiologia , Humanos , Imageamento Tridimensional/instrumentação , Lactente , Recém-Nascido , Masculino , Modelos Biológicos , Movimento (Física) , Tomografia por Emissão de Pósitrons/instrumentação , Respiração , Tomografia Computadorizada por Raios X/instrumentação
5.
AJNR Am J Neuroradiol ; 36(1): 84-90, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25169926

RESUMO

BACKGROUND AND PURPOSE: Site-specific degeneration patterns of the infratentorial brain in relation to phylogenetic origins may relate to symptoms in patients with spinocerebellar degeneration, but the patterns are still unclear. We investigated macro- and microstructural changes of the infratentorial brain based on phylogenetic origins and their correlation with symptoms in patients with spinocerebellar ataxia type 6. MATERIALS AND METHODS: MR images of 9 patients with spinocerebellar ataxia type 6 and 9 age- and sex-matched controls were obtained. We divided the infratentorial brain on the basis of phylogenetic origins and performed an atlas-based analysis. Comparisons of the 2 groups and a correlation analysis assessed with the International Cooperative Ataxia Rating Scale excluding age effects were performed. RESULTS: A significant decrease of fractional volume and an increase of mean diffusivity were seen in all subdivisions of the cerebellum and in all the cerebellar peduncles except mean diffusivity in the inferior cerebellar peduncle in patients compared with controls (P < .0001 to <.05). The bilateral anterior lobes showed the strongest atrophy. Fractional volume decreased mainly in old regions, whereas mean diffusivity increased mainly in new regions of the cerebellum. Reflecting this tendency, the International Cooperative Ataxia Rating Scale total score showed strong correlations in fractional volume in the right flocculonodular lobe and the bilateral deep structures and in mean diffusivity in the bilateral posterior lobes (r = 0.73 to ±0.87). CONCLUSIONS: We found characteristic macro- and microstructural changes, depending on phylogenetic regions of the infratentorial brain, that strongly correlated with clinical symptoms in patients with spinocerebellar ataxia type 6.


Assuntos
Tronco Encefálico/patologia , Cerebelo/patologia , Ataxias Espinocerebelares/patologia , Adulto , Idoso , Atrofia/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Filogenia , Índice de Gravidade de Doença
6.
Med Phys ; 41(3): 033701, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24593745

RESUMO

PURPOSE: The authors previously developed an adult population of 4D extended cardiac-torso (XCAT) phantoms for multimodality imaging research. In this work, the authors develop a reference set of 4D pediatric XCAT phantoms consisting of male and female anatomies at ages of newborn, 1, 5, 10, and 15 years. These models will serve as the foundation from which the authors will create a vast population of pediatric phantoms for optimizing pediatric CT imaging protocols. METHODS: Each phantom was based on a unique set of CT data from a normal patient obtained from the Duke University database. The datasets were selected to best match the reference values for height and weight for the different ages and genders according to ICRP Publication 89. The major organs and structures were segmented from the CT data and used to create an initial pediatric model defined using nonuniform rational B-spline surfaces. The CT data covered the entire torso and part of the head. To complete the body, the authors manually added on the top of the head and the arms and legs using scaled versions of the XCAT adult models or additional models created from cadaver data. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from a template XCAT phantom (male or female 50th percentile adult) to the target pediatric model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. The masses of the organs in each phantom were matched to the reference values given in ICRP Publication 89. The new reference models were checked for anatomical accuracy via visual inspection. RESULTS: The authors created a set of ten pediatric reference phantoms that have the same level of detail and functionality as the original XCAT phantom adults. Each consists of thousands of anatomical structures and includes parameterized models for the cardiac and respiratory motions. Based on patient data, the phantoms capture the anatomic variations of childhood, such as the development of bone in the skull, pelvis, and long bones, and the growth of the vertebrae and organs. The phantoms can be combined with existing simulation packages to generate realistic pediatric imaging data from different modalities. CONCLUSIONS: The development of patient-derived pediatric computational phantoms is useful in providing variable anatomies for simulation. Future work will expand this ten-phantom base to a host of pediatric phantoms representative of the public at large. This can provide a means to evaluate and improve pediatric imaging devices and to optimize CT protocols in terms of image quality and radiation dose.


Assuntos
Tomografia Computadorizada Quadridimensional/métodos , Coração/diagnóstico por imagem , Imagens de Fantasmas , Radiografia Torácica/métodos , Adolescente , Algoritmos , Criança , Pré-Escolar , Feminino , Cabeça/diagnóstico por imagem , Humanos , Lactente , Recém-Nascido , Masculino , Modelos Anatômicos , Imagem Multimodal , Software
7.
Med Phys ; 40(4): 043701, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23556927

RESUMO

PURPOSE: The authors previously developed the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. The XCAT consisted of highly detailed whole-body models for the standard male and female adult, including the cardiac and respiratory motions. In this work, the authors extend the XCAT beyond these reference anatomies by developing a series of anatomically variable 4D XCAT adult phantoms for imaging research, the first library of 4D computational phantoms. METHODS: The initial anatomy of each phantom was based on chest-abdomen-pelvis computed tomography data from normal patients obtained from the Duke University database. The major organs and structures for each phantom were segmented from the corresponding data and defined using nonuniform rational B-spline surfaces. To complete the body, the authors manually added on the head, arms, and legs using the original XCAT adult male and female anatomies. The structures were scaled to best match the age and anatomy of the patient. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from the template XCAT phantom (male or female) to the target patient model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. Each new phantom was refined by checking for anatomical accuracy via inspection of the models. RESULTS: Using these methods, the authors created a series of computerized phantoms with thousands of anatomical structures and modeling cardiac and respiratory motions. The database consists of 58 (35 male and 23 female) anatomically variable phantoms in total. Like the original XCAT, these phantoms can be combined with existing simulation packages to simulate realistic imaging data. Each new phantom contains parameterized models for the anatomy and the cardiac and respiratory motions and can, therefore, serve as a jumping point from which to create an unlimited number of 3D and 4D variations for imaging research. CONCLUSIONS: A population of phantoms that includes a range of anatomical variations representative of the public at large is needed to more closely mimic a clinical study or trial. The series of anatomically variable phantoms developed in this work provide a valuable resource for investigating 3D and 4D imaging devices and the effects of anatomy and motion in imaging. Combined with Monte Carlo simulation programs, the phantoms also provide a valuable tool to investigate patient-specific dose and image quality, and optimization for adults undergoing imaging procedures.


Assuntos
Tomografia Computadorizada Quadridimensional/instrumentação , Imageamento Tridimensional/métodos , Modelos Anatômicos , Imagens de Fantasmas , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Adulto , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Masculino , Intensificação de Imagem Radiográfica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
J Math Imaging Vis ; 40(1): 20-35, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21765611

RESUMO

Neuropsychiatric disorders have been demonstrated to manifest shape differences in cortical structures. Labeled Cortical Distance Mapping (LCDM) is a powerful tool in quantifying such morphometric differences and characterizes the morphometry of the laminar cortical mantle of cortical structures. Specifically, LCDM data are distances of labeled gray matter (GM) voxels with respect to the gray/white matter cortical surface. Volumes and descriptive measures (such as means and variances for each subject) based on LCDM distances provide descriptive summary information on some of the shape characteristics. However, additional morphometrics are contained in the data and their analysis may provide additional clues to underlying differences in cortical characteristics. To use more of this information, we pool (merge) LCDM distances from subjects in the same group. These pooled distances can help detect morphometric differences between groups, but do not provide information about the locations of such differences in the tissue in question. In this article, we check for the influence of the assumption violations on the analysis of pooled LCDM distances. We demonstrate that the classical parametric tests are robust to the non-normality and within sample dependence of LCDM distances and nonparametric tests are robust to within sample dependence of LCDM distances. We specify the types of alternatives for which the tests are more sensitive. We also show that the pooled LCDM distances provide powerful results for group differences in distribution of LCDM distances. As an illustrative example, we use GM in the ventral medial prefrontal cortex (VMPFC) in subjects with major depressive disorder (MDD), subjects at high risk (HR) of MDD, and healthy subjects. Significant morphometric differences were found in VMPFC due to MDD or being at HR. In particular, the analysis indicated that distances in left and right VMPFCs tend to decrease due to MDD or being at HR, possibly as a result of thinning. The methodology can also be applied to other cortical structures.

9.
Neuroscience ; 162(4): 1339-50, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19490934

RESUMO

Stereotaxic atlases of the mouse brain are important in neuroscience research for targeting of specific internal brain structures during surgical operations. The effectiveness of stereotaxic surgery depends on accurate mapping of the brain structures relative to landmarks on the skull. During postnatal development in the mouse, rapid growth-related changes in the brain occur concurrently with growth of bony plates at the cranial sutures, therefore adult mouse brain atlases cannot be used to precisely guide stereotaxis in developing brains. In this study, three-dimensional stereotaxic atlases of C57BL/6J mouse brains at six postnatal developmental stages: postnatal day (P) 7, P14, P21, P28, P63 and in adults (P140-P160) were developed, using diffusion tensor imaging (DTI) and micro-computed tomography (CT). At present, most widely-used stereotaxic atlases of the mouse brain are based on histology, but the anatomical fidelity of ex vivo atlases to in vivo mouse brains has not been evaluated previously. To account for ex vivo tissue distortion due to fixation as well as individual variability in the brain, we developed a population-averaged in vivo magnetic resonance imaging adult mouse brain stereotaxic atlas, and a distortion-corrected DTI atlas was generated by nonlinearly warping ex vivo data to the population-averaged in vivo atlas. These atlas resources were developed and made available through a new software user-interface with the objective of improving the accuracy of targeting brain structures during stereotaxic surgery in developing and adult C57BL/6J mouse brains.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Técnicas Estereotáxicas , Animais , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Ilustração Médica , Camundongos , Camundongos Endogâmicos C57BL , Microtomografia por Raio-X
10.
Neuroimage ; 25(3): 783-92, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15808979

RESUMO

Structural deformity of the hippocampus is characteristic of individuals with very mild and mild forms of dementia of the Alzheimer type (DAT). The purpose of this study was to determine whether a similar deformity of the hippocampus can predict the onset of dementia in nondemented elders. Using high dimensional diffeomorphic transformations of a neuroanatomical template, hippocampal volumes and surfaces were defined in 49 nondemented elders; the hippocampal surface was subsequently partitioned into three zones (i.e., lateral, superior and inferior-medial), which were proximal to the underlying CA1 subfield, CA2-4 subfields plus dentate gyrus, and subiculum, respectively. Annual clinical assessments using the Clinical Dementia Rating scale (CDR), where CDR 0 indicates no dementia and CDR 0.5 indicates very mild dementia, were then performed for a mean of 4.9 years (range 0.9-7.1 years) to monitor subjects who converted from CDR 0 to CDR 0.5. Inward variation of the lateral zone and left hippocampal volume significantly predicted conversion to CDR 0.5 in separate Cox proportional hazards models. When hippocampal surface variation and volume were included in a single model, inward variation of the lateral zone of the left hippocampal surface was selected as the only significant predictor of conversion. The pattern of hippocampal surface deformation observed in nondemented subjects who later converted to CDR 0.5 was similar to the pattern of hippocampal surface deformation previously observed to discriminate subjects with very mild DAT and nondemented subjects. These results suggest that inward deformation of the left hippocampal surface in a zone corresponding to the CA1 subfield is an early predictor of the onset of DAT in nondemented elderly subjects.


Assuntos
Doença de Alzheimer/diagnóstico , Hipocampo/patologia , Aumento da Imagem , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Idoso , Idoso de 80 Anos ou mais , Giro Denteado/patologia , Dominância Cerebral/fisiologia , Diagnóstico Precoce , Feminino , Seguimentos , Humanos , Masculino , Computação Matemática , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tamanho do Órgão , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , Valores de Referência , Medição de Risco
11.
Neuroimage ; 23 Suppl 1: S161-9, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15501085

RESUMO

In this paper, we present a linear setting for statistical analysis of shape and an optimization approach based on a recent derivation of a conservation of momentum law for the geodesics of diffeomorphic flow. Once a template is fixed, the space of initial momentum becomes an appropriate space for studying shape via geodesic flow since the flow at any point along the geodesic is completely determined by the momentum at the origin through geodesic shooting equations. The space of initial momentum provides a linear representation of the nonlinear diffeomorphic shape space in which linear statistical analysis can be applied. Specializing to the landmark matching problem of Computational Anatomy, we derive an algorithm for solving the variational problem with respect to the initial momentum and demonstrate principal component analysis (PCA) in this setting with three-dimensional face and hippocampus databases.


Assuntos
Anatomia/estatística & dados numéricos , Algoritmos , Biologia Computacional , Bases de Dados Factuais , Face/anatomia & histologia , Humanos , Modelos Lineares , Modelos Anatômicos , Modelos Estatísticos , Análise de Componente Principal
12.
Proc Natl Acad Sci U S A ; 100(25): 15172-7, 2003 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-14657370

RESUMO

The cingulate gyri in 37 subjects with and without early dementia of the Alzheimer type (DAT) were studied by using MRI at 1.0 mm3 isotropic resolution. Groups were segregated into young controls (n = 10), age-matched normal controls (n = 10), very mild DAT (n = 8), and mild DAT (n = 9). By using automated Bayesian segmentation of the cortex and gray matter/white matter (GM/WM) isosurface generation, tissue compartments were labeled into gray, white, and cerebrospinal fluid as a function of distance from the GM/WM isosurface. Cortical mantle distance maps are generated profiling the GM volume and cortical mantle distribution as a function of distance from the cortical surface. Probabilistic tests based on generalizations of Wilcoxon-Mann-Whitney tests were applied to quantify cortical mantle distribution changes with normal and abnormal aging. We find no significant change between young controls and healthy aging as measured by the GM volume and cortical mantle distribution as a function of distance in both anterior and posterior regions of the cingulate. Significant progression of GM loss is seen in the very mild DAT and mild DAT groups in all areas of the cingulate. Posterior regions show both GM volume loss as well as significant cortical mantle distribution decrease with the onset of mild DAT. The "shape of the cortical mantle" as measured by the cortical mantle distance profiles manifests a pronounced increase in variability with mild DAT.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Mapeamento Encefálico , Adulto , Fatores Etários , Idoso , Envelhecimento , Teorema de Bayes , Encéfalo/patologia , Córtex Cerebral/patologia , Demência/patologia , Feminino , Giro do Cíngulo/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Processos Estocásticos
13.
Neuroimage ; 20(1): 359-77, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14527596

RESUMO

Dynamic programming is used to define boundaries of cortical submanifolds with focus on the planum temporale (PT) of the superior temporal gyrus (STG), which has been implicated in a variety of neuropsychiatric disorders. To this end, automated methods are used to generate the PT manifold from 10 high-resolution MRI subvolumes ROI masks encompassing the STG. A procedure to define the subvolume ROI masks from original MRI brain scans is developed. Bayesian segmentation is then used to segment the subvolumes into cerebrospinal fluid, gray matter (GM), and white matter (WM). 3D isocontouring using the intensity value at which there is equal probability of GM and WM is used to reconstruct the triangulated graph representing the STG cortical surface, enabling principal curvature at each point on the graph to be computed. Dynamic programming is used to delineate the PT manifold by tracking principal curves from the retro-insular end of the Heschl's gyrus (HG) to the STG, along the posterior STG up to the start of the ramus and back to the retro-insular end of the HG. A coordinate system is then defined on the PT manifold. The origin is defined by the retro-insular end of the HG and the y-axis passes through the point on the posterior STG where the ramus begins. Automated labeling of GM in the STG is robust with L(1) distances between Bayesian and manual segmentation in the range 0.001-0.12 (n = 20). PT reconstruction is also robust with 90% of the vertices of the reconstructed PT within about 1 voxel (n = 20) from semiautomated contours. Finally, the reliability index (based on interrater intraclass correlation) for the surface area derived from repeated reconstructions is 0.96 for the left PT and 0.94 for the right PT, thus demonstrating the robustness of dynamic programming in defining a coordinate system on the PT. It provides a method with potential significance in the study of neuropsychiatric disorders.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neocórtex/fisiologia , Lobo Temporal/fisiologia , Algoritmos , Teorema de Bayes , Mapeamento Encefálico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Reprodutibilidade dos Testes
14.
Neuroimage ; 14(5): 1058-69, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11697937

RESUMO

This paper describes cortical analysis of 19 high resolution MRI subvolumes of medial prefrontal cortex (MPFC), a region that has been implicated in major depressive disorder. An automated Bayesian segmentation is used to delineate the MRI subvolumes into cerebrospinal fluid (CSF), gray matter (GM), white matter (WM), and partial volumes of either CSF/GM or GM/WM. The intensity value at which there is equal probability of GM and GM/WM partial volume is used to reconstruct MPFC cortical surfaces based on a 3-D isocontouring algorithm. The segmented data and the generated surfaces are validated by comparison with hand segmented data and semiautomated contours, respectively. The L(1) distances between Bayesian and hand segmented data are 0.05-0.10 (n = 5). Fifty percent of the voxels of the reconstructed surface lie within 0.12-0.28 mm (n = 14) from the semiautomated contours. Cortical thickness metrics are generated in the form of frequency of occurrence histograms for GM and WM labelled voxels as a function of their position from the cortical surface. An algorithm to compute the surface area of the GM/WM interface of the MPFC subvolume is described. These methods represent a novel approach to morphometric chacterization of regional cortex features which may be important in the study of psychiatric disorders such as major depression.


Assuntos
Transtorno Depressivo Maior/patologia , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Córtex Pré-Frontal/patologia , Adulto , Algoritmos , Teorema de Bayes , Cefalometria , Líquido Cefalorraquidiano/fisiologia , Feminino , Humanos , Valores de Referência , Sensibilidade e Especificidade
15.
Neuroimage ; 14(3): 531-45, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11506528

RESUMO

The asymmetry of brain structures has been studied in schizophrenia to better understand its underlying neurobiology. Brain regions of interest have previously been characterized by volumes, cross-sectional and surface areas, and lengths. Using high-dimensional brain mapping, we have developed a statistical method for analyzing patterns of left-right asymmetry of the human hippocampus taken from high-resolution MR scans. We introduce asymmetry measures that capture differences in the patterns of high-dimensional vector fields between the left and right hippocampus surfaces. In 15 pairs of subjects previously studied (J. G. Csernansky et al., 1998, Proc. Natl. Acad. Sci. USA 95, 11406-11411). we define the difference in hippocampal asymmetry patterns between the groups. Volume analysis indicated a large normative asymmetry between left and right hippocampus (R > L), and shape analysis allowed us to visualize the normative asymmetry pattern of the hippocampal surfaces. We observed that the right hippocampus was wider along its lateral side in both schizophrenia and control subjects. Also, while patterns of hippocampal asymmetry were generally similar in the schizophrenia and control groups, a principal component analysis based on left-right asymmetry vector fields detected a statistically significant difference between the two groups, specifically related to the subiculum.


Assuntos
Hipocampo/patologia , Modelos Neurológicos , Esquizofrenia/diagnóstico , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Valores de Referência
16.
Vision Res ; 41(10-11): 1359-78, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11322980

RESUMO

We have used surface-based atlases of the cerebral cortex to analyze the functional organization of visual cortex in humans and macaque monkeys. The macaque atlas contains multiple partitioning schemes for visual cortex, including a probabilistic atlas of visual areas derived from a recent architectonic study, plus summary schemes that reflect a combination of physiological and anatomical evidence. The human atlas includes a probabilistic map of eight topographically organized visual areas recently mapped using functional MRI. To facilitate comparisons between species, we used surface-based warping to bring functional and geographic landmarks on the macaque map into register with corresponding landmarks on the human map. The results suggest that extrastriate visual cortex outside the known topographically organized areas is dramatically expanded in human compared to macaque cortex, particularly in the parietal lobe.


Assuntos
Mapeamento Encefálico , Córtex Visual/fisiologia , Animais , Humanos , Macaca , Imageamento por Ressonância Magnética
17.
Neuroimage ; 12(6): 676-87, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11112399

RESUMO

This paper describes the construction of cortical metrics quantifying the probabilistic occurrence of gray matter, white matter, and cerebrospinal fluid compartments in their correlation to the geometry of the neocortex as measured in 0.5-1.0 mm magnetic resonance imagery. These cortical profiles represent the density of the tissue types as a function of distance to the cortical surface. These metrics are consistent when generated across multiple brains indicating a fundamental property of the neocortex. Methods are proposed for incorporating such metrics into automated Bayes segmentation.


Assuntos
Antropometria , Teorema de Bayes , Córtex Cerebral/anatomia & histologia , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Artefatos , Mapeamento Encefálico , Humanos , Modelos Estatísticos , Neocórtex/anatomia & histologia , Valores de Referência
18.
Neurology ; 55(11): 1636-43, 2000 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-11113216

RESUMO

OBJECTIVE: To determine the feasibility of using high-dimensional brain mapping (HDBM) to assess the structure of the hippocampus in older human subjects, and to compare measurements of hippocampal volume and shape in subjects with early dementia of the Alzheimer type (DAT) and in healthy elderly and younger control subjects. BACKGROUND: HDBM represents the typical structures of the brain via the construction of templates and addresses their variability by probabilistic transformations applied to the templates. Local application of the transformations throughout the brain (i.e., high dimensionality) makes HDBM especially valuable for defining subtle deformities in brain structures such as the hippocampus. METHODS: MR scans were obtained in 18 subjects with very mild DAT, 18 healthy elderly subjects, and 15 healthy younger subjects. HDBM was used to obtain estimates of left and right hippocampal volume and eigenvectors that represented the principal dimensions of hippocampal shape differences among the subject groups. RESULTS: Hippocampal volume loss and shape deformities observed in subjects with DAT distinguished them from both elderly and younger control subjects. The pattern of hippocampal deformities in subjects with DAT was largely symmetric and suggested damage to the CA1 hippocampal subfield. Hippocampal shape changes were also observed in healthy elderly subjects, which distinguished them from healthy younger subjects. These shape changes occurred in a pattern distinct from the pattern seen in DAT and were not associated with substantial volume loss. CONCLUSIONS: Assessments of hippocampal volume and shape derived from HDBM may be useful in distinguishing early DAT from healthy aging.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Mapeamento Encefálico , Hipocampo/patologia , Hipocampo/fisiopatologia , Idoso , Feminino , Humanos , Masculino , Fatores de Tempo
20.
Radiology ; 216(1): 291-7, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10887264

RESUMO

In five patients with mesial temporal sclerosis, the authors verified the precision and reproducibility of hippocampal segmentations with deformation-based magnetic resonance (MR) imaging. The overall percentage overlap between automated segmentations was 92.8% (SD, 3.5%), between manual segmentations was 73.1% (SD, 9.5%), and between automated and manual segmentations was 74.8% (SD, 10.3%). Deformation-based hippocampal segmentations provided a precise method of hippocampal volume measurement in this patient population.


Assuntos
Epilepsia do Lobo Temporal/patologia , Hipocampo/patologia , Imageamento por Ressonância Magnética , Esclerose , Lobo Temporal/patologia , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...