Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 38(36): 6323-6337, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31308489

RESUMO

Ovarian cancer is the fifth-leading cause of cancer death among women. The dissemination of ovarian tumors and growth as spheroids accompanies late-stage disease. In cell culture, ovarian tumor cell spheroids can exhibit elevated resistance to environmental stressors, such as reactive oxygen species. Homeostatic balance of the antioxidant response is a protective mechanism that prevents anoikis, a form of programmed cell death. Signaling pathways activated by integrin receptors suppress anoikis. Rgnef (ARHGEF28/p190RhoGEF) is a guanine nucleotide exchange factor that is activated downstream of integrins. We find that Rgnef protein levels are elevated in late-stage serous ovarian cancer, high Rgnef mRNA levels are associated with decreased progression-free and overall survival, and genomic ARHGEF28 loss is associated with increased patient survival. Using transgenic and transplantable Rgnef knockout mouse models, we find that Rgnef is essential for supporting three-dimensional ovarian spheroid formation in vitro and tumor growth in mice. Using RNA-sequencing and bioinformatic analyses, we identify a conserved Rgnef-supported anti-oxidant gene signature including Gpx4, Nqo1, and Gsta4; common targets of the NF-kB transcription factor. Antioxidant treatment enhanced growth of Rgnef-knockout spheroids and Rgnef re-expression facilitated NF-κB-dependent tumorsphere survival. These studies reveal a new role for Rgnef in ovarian cancer to facilitate NF-κB-mediated gene expression protecting cells from oxidative stress.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/fisiologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Estresse Oxidativo/genética , ras-GRF1/fisiologia , Animais , Proliferação de Células/genética , Citoproteção/genética , Progressão da Doença , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Neoplasias Ovarianas/metabolismo , Transdução de Sinais/genética , Células Tumorais Cultivadas , ras-GRF1/genética
2.
Breast Cancer Res ; 17: 47, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25880415

RESUMO

INTRODUCTION: Focal adhesion kinase (FAK) controls cell growth and survival downstream of integrin-matrix receptors. Upon adhesion loss or FAK inhibition, FAK can translocate to the nucleus. The nucleolus is a non-membrane nuclear structure that regulates ribosome biogenesis and cell proliferation. Nucleostemin (NS), a nucleolar-localized protein, modulates cell cycle progression, stemness, and three-dimensional tumor spheroid formation. The signaling pathways that regulate NS levels in tumors remain undefined. METHODS: Human breast carcinoma cells were evaluated for growth in culture (adherent and anchorage-independent spheroid) and as orthotopic tumors. FAK signaling was evaluated by pharmacological FAK inhibitor addition (PF-271, IC50~0.1 µM) and by small hairpin RNA (shRNA) knockdown followed by re-expression of FAK wildtype (WT) or a kinase-dead (KD, K454R) FAK point mutant. Immunoblotting was used to evaluate FAK, NS, nucleolar phosphoprotein B23, and nucleolin levels. Total and phosphospecific antibody imunoblotting were used to detect changes in FAK, Akt kinase (Akt also known as protein kinase B), and 4E-binding protein 1 (4E-BP1) phosphorylation, a translation repressor protein and target of the mammalian target of rapamycin (mTOR) complex. Immunohistochemical, co-immunoprecipitation, and cellular fractionation analyses were used to evaluate FAK association with nucleoli. RESULTS: Pharmacological (0.1 µM PF-271) or genetic inhibition of FAK activity prevents MDA-MB-231 and 4T1L breast carcinoma growth as spheroids and as orthotopic tumors. FAK inhibition triggers proteasome-mediated decreased NS levels but no changes in other nucleolar proteins such as B23 (nucleophosmin) or nucleolin. Active FAK was associated with purified nucleoli of anchorage-independent cells and present within nucleoli of human invasive ductal carcinoma tumor samples. FAK co-immunoprecipitated with B23 that binds NS and a complex between FAK, NS, Akt, and mTOR was detected. Constitutively-active Akt kinase promoted tumor spheroid growth, stabilized NS levels, and promoted pS65 4E-BP1 phosphorylation in the presence of inhibited FAK. Rapamycin lowered NS levels and inhibited pS65 4E-BP1 phosphorylation in cells with activated Akt-mTOR signaling. CONCLUSIONS: FAK signaling occurs in the nucleolus, active FAK protects NS, and Akt-mTOR pathway regulates NS protein stability needed for breast carcinoma spheroid and tumor growth.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas Nucleares/metabolismo , Animais , Neoplasias da Mama/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/genética , Humanos , Camundongos , Nucleofosmina , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Sirolimo/farmacologia , Esferoides Celulares , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Células Tumorais Cultivadas , Ensaio Tumoral de Célula-Tronco
3.
J Biol Chem ; 290(24): 15197-209, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25922072

RESUMO

The guanine nucleotide exchange factor Rgnef (also known as ArhGEF28 or p190RhoGEF) promotes colon carcinoma cell motility and tumor progression via interaction with focal adhesion kinase (FAK). Mechanisms of Rgnef activation downstream of integrin or G protein-coupled receptors remain undefined. In the absence of a recognized G protein signaling homology domain in Rgnef, no proximal linkage to G proteins was known. Utilizing multiple methods, we have identified Rgnef as a new effector for Gα13 downstream of gastrin and the type 2 cholecystokinin receptor. In DLD-1 colon carcinoma cells depleted of Gα13, gastrin-induced FAK Tyr(P)-397 and paxillin Tyr(P)-31 phosphorylation were reduced. RhoA GTP binding and promoter activity were increased by Rgnef in combination with active Gα13. Rgnef co-immunoprecipitated with activated Gα13Q226L but not Gα12Q229L. The Rgnef C-terminal (CT, 1279-1582) region was sufficient for co-immunoprecipitation, and Rgnef-CT exogenous expression prevented Gα13-stimulated SRE activity. A domain at the C terminus of the protein close to the FAK binding domain is necessary to bind to Gα13. Point mutations of Rgnef-CT residues disrupt association with active Gα13 but not Gαq. These results show that Rgnef functions as an effector of Gα13 signaling and that this linkage may mediate FAK activation in DLD-1 colon carcinoma cells.


Assuntos
Neoplasias do Colo/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/fisiologia , Gastrinas/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células HEK293 , Humanos , Paxilina/química , Paxilina/metabolismo , Fosforilação , Receptor de Colecistocinina B/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/química , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Tirosina/metabolismo
4.
Mol Cancer Ther ; 13(8): 2050-61, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24899686

RESUMO

Ovarian cancer ascites fluid contains matrix proteins that can impact tumor growth via integrin receptor binding. In human ovarian tumor tissue arrays, we find that activation of the cytoplasmic focal adhesion (FAK) tyrosine kinase parallels increased tumor stage, ß5 integrin, and osteopontin matrix staining. Elevated osteopontin, ß5 integrin, and FAK mRNA levels are associated with decreased serous ovarian cancer patient survival. FAK remains active within ovarian cancer cells grown as spheroids, and anchorage-independent growth analyses of seven ovarian carcinoma cell lines identified sensitive (HEY, OVCAR8) and resistant (SKOV3-IP, OVCAR10) cells to 0.1 µmol/L FAK inhibitor (VS-4718, formerly PND-1186) treatment. VS-4718 promoted HEY and OVCAR8 G0-G1 cell-cycle arrest followed by cell death, whereas growth of SKOV3-IP and OVCAR10 cells was resistant to 1.0 µmol/L VS-4718. In HEY cells, genetic or pharmacological FAK inhibition prevented tumor growth in mice with corresponding reductions in ß5 integrin and osteopontin expression. ß5 knockdown reduced HEY cell growth in soft agar, tumor growth in mice, and both FAK Y397 phosphorylation and osteopontin expression in spheroids. FAK inhibitor-resistant (SKOV3-IP, OVCAR10) cells exhibited anchorage-independent Akt S473 phosphorylation, and expression of membrane-targeted and active Akt in sensitive cells (HEY, OVCAR8) increased growth but did not create a FAK inhibitor-resistant phenotype. These results link osteopontin, ß5 integrin, and FAK in promoting ovarian tumor progression. ß5 integrin expression may serve as a biomarker for serous ovarian carcinoma cells that possess active FAK signaling.


Assuntos
Quinase 1 de Adesão Focal/metabolismo , Cadeias beta de Integrinas/metabolismo , Neoplasias Císticas, Mucinosas e Serosas/metabolismo , Neoplasias Ovarianas/metabolismo , Aminopiridinas/farmacologia , Animais , Antineoplásicos/farmacologia , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Feminino , Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 de Adesão Focal/genética , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Camundongos Nus , Transplante de Neoplasias , Neoplasias Císticas, Mucinosas e Serosas/mortalidade , Osteopontina/metabolismo , Neoplasias Ovarianas/mortalidade , Transdução de Sinais
5.
Gynecol Oncol ; 134(1): 104-11, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24786638

RESUMO

OBJECTIVE: Focal adhesion kinase (FAK) is overexpressed in serous ovarian cancer. Loss of merlin, a product of the neurofibromatosis 2 tumor suppressor gene, is being evaluated as a biomarker for FAK inhibitor sensitivity in mesothelioma. Connections between merlin and FAK in ovarian cancer remain undefined. METHODS: Nine human and two murine ovarian cancer cell lines were analyzed for growth in the presence of a small molecule FAK inhibitor (PF-271, also termed VS-6062) from 0.1 to 1 µM for 72 h. Merlin was evaluated by immunoblotting and immunostaining of a human ovarian tumor tissue array. Growth of cells was analyzed in an orthotopic tumor model and evaluated in vitro after stable shRNA-mediated merlin knockdown. RESULTS: Greater than 50% inhibition of OVCAR8, HEY, and ID8-IP ovarian carcinoma cell growth occurred with 0.1 µM PF-271 in anchorage-independent (p<0.001) but not in adherent culture conditions. PF-271-mediated reduction in FAK Y397 phosphorylation occurred independently of growth inhibition. Suspended growth of OVCAR3, OVCAR10, IGROV1, IGROV1-IP, SKOV3, SKOV3-IP, A2780, and 5009-MOVCAR was not affected by 0.1 µM PF-271. Merlin expression did not correlate with serous ovarian tumor grade or stage. PF-271 (30 mg/kg, BID) did not inhibit 5009-MOVCAR tumor growth and merlin knockdown in SKOV3-IP and OVCAR10 cells did not alter suspended cell growth upon PF-271 addition. CONCLUSIONS: Differential responsiveness to FAK inhibitor treatment was observed. Intrinsic low merlin protein level correlated with PF-271-mediated anchorage-independent growth inhibition, but reduction in merlin expression did not induce sensitivity to FAK inhibition. Merlin levels may be useful for patient stratification in FAK inhibitor trials.


Assuntos
Cistadenocarcinoma Seroso/tratamento farmacológico , Quinase 1 de Adesão Focal/antagonistas & inibidores , Neurofibromina 2/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/enzimologia , Cistadenocarcinoma Seroso/metabolismo , Feminino , Quinase 1 de Adesão Focal/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Neurofibromina 2/genética , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/metabolismo
6.
J Cell Biol ; 204(2): 247-63, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24446483

RESUMO

Pharmacological focal adhesion kinase (FAK) inhibition prevents tumor growth and metastasis, via actions on both tumor and stromal cells. In this paper, we show that vascular endothelial cadherin (VEC) tyrosine (Y) 658 is a target of FAK in tumor-associated endothelial cells (ECs). Conditional kinase-dead FAK knockin within ECs inhibited recombinant vascular endothelial growth factor (VEGF-A) and tumor-induced VEC-Y658 phosphorylation in vivo. Adherence of VEGF-expressing tumor cells to ECs triggered FAK-dependent VEC-Y658 phosphorylation. Both FAK inhibition and VEC-Y658F mutation within ECs prevented VEGF-initiated paracellular permeability and tumor cell transmigration across EC barriers. In mice, EC FAK inhibition prevented VEGF-dependent tumor cell extravasation and melanoma dermal to lung metastasis without affecting primary tumor growth. As pharmacological c-Src or FAK inhibition prevents VEGF-stimulated c-Src and FAK translocation to EC adherens junctions, but FAK inhibition does not alter c-Src activation, our experiments identify EC FAK as a key intermediate between c-Src and the regulation of EC barrier function controlling tumor metastasis.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/fisiologia , Animais , Antígenos CD/fisiologia , Caderinas/fisiologia , Movimento Celular , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Fosforilação , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
J Cell Sci ; 126(Pt 21): 5074-85, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24006257

RESUMO

Rgnef (also known as p190RhoGEF or ARHGEF28) is a Rho guanine-nucleotide-exchange factor (GEF) that binds focal adhesion kinase (FAK). FAK is recruited to adhesions and activated by integrin receptors binding to matrix proteins, such as fibronectin (FN). Canonical models place Rgnef downstream of integrin-FAK signaling in regulating Rho GTPase activity and cell movement. Herein, we establish a new, upstream role for Rgnef in enhancing FAK localization to early peripheral adhesions and promoting FAK activation upon FN binding. Rgnef-null mouse embryo fibroblasts (MEFs) exhibit defects in adhesion formation, levels of FAK phosphotyrosine (pY)-397 and FAK localization to peripheral adhesions upon re-plating on FN. Rgnef re-expression rescues these defects, but requires Rgnef-FAK binding. A mutation in the Rgnef pleckstrin homology (PH) domain inhibits adhesion formation, FAK localization, and FAK-Y397 and paxillin-Y118 phosphorylation without disrupting the Rgnef-FAK interaction. A GEF-inactive Rgnef mutant rescues FAK-Y397 phosphorylation and early adhesion localization, but not paxillin-Y118 phosphorylation. This suggests that, downstream of FN binding, paxillin-pY118 requires Rgnef GEF activity through a mechanism distinct from adhesion formation and FAK activation. These results support a scaffolding role for Rgnef in FAK localization and activation at early adhesions in a PH-domain-dependent but GEF-activity-independent manner.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Integrina beta1/metabolismo , ras-GRF1/metabolismo , Sequência de Aminoácidos , Animais , Adesão Celular , Células Cultivadas , Ativação Enzimática , Fibroblastos/citologia , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/química , Proteína-Tirosina Quinases de Adesão Focal/genética , Integrina beta1/genética , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Paxilina/genética , Paxilina/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Transdução de Sinais , ras-GRF1/química , ras-GRF1/genética
8.
Clin Exp Metastasis ; 30(5): 579-94, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23275034

RESUMO

Recurrence and spread of ovarian cancer is the 5th leading cause of death for women in the United States. Focal adhesion kinase (FAK) is a cytoplasmic protein-tyrosine kinase located on chromosome 8q24.3 (gene is Ptk2), a site commonly amplified in serous ovarian cancer. Elevated FAK mRNA levels in serous ovarian carcinoma are associated with decreased (logrank P = 0.0007, hazard ratio 1.43) patient overall survival, but how FAK functions in tumor progression remains undefined. We have isolated aggressive ovarian carcinoma cells termed ID8-IP after intraperitoneal (IP) growth of murine ID8 cells in C57Bl6 mice. Upon orthotopic implantation within the peri-ovarian bursa space, ID8-IP cells exhibit greater tumor growth, local and distant metastasis, and elevated numbers of ascites-associated cells compared to parental ID8 cells. ID8-IP cells exhibit enhanced growth under non-adherent conditions with elevated FAK and c-Src tyrosine kinase activation compared to parental ID8 cells. In vitro, the small molecule FAK inhibitor (Pfizer, PF562,271, PF-271) at 0.1 uM selectively prevented anchorage-independent ID8-IP cell growth with the inhibition of FAK tyrosine (Y)397 but not c-Src Y416 phosphorylation. Oral PF-271 administration (30 mg/kg, twice daily) blocked FAK but not c-Src tyrosine phosphorylation in ID8-IP tumors. This was associated with decreased tumor size, prevention of peritoneal metastasis, reduced tumor-associated endothelial cell number, and increased tumor cell-associated apoptosis. FAK knockdown and re-expression assays showed that FAK activity selectively promoted anchorage-independent ID8-IP cell survival. These results support the continued evaluation of FAK inhibitors as a promising clinical treatment for ovarian cancer.


Assuntos
Divisão Celular/efeitos dos fármacos , Progressão da Doença , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Neoplasias Ovarianas/patologia , Inibidores de Proteínas Quinases/farmacologia , Feminino , Proteína-Tirosina Quinases de Adesão Focal/genética , Humanos , Neoplasias Ovarianas/enzimologia , RNA Mensageiro/genética
9.
J Cell Biol ; 197(7): 907-19, 2012 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-22734001

RESUMO

Vascular cell adhesion molecule-1 (VCAM-1) plays important roles in development and inflammation. Tumor necrosis factor-α (TNF-α) and focal adhesion kinase (FAK) are key regulators of inflammatory and integrin-matrix signaling, respectively. Integrin costimulatory signals modulate inflammatory gene expression, but the important control points between these pathways remain unresolved. We report that pharmacological FAK inhibition prevented TNF-α-induced VCAM-1 expression within heart vessel-associated endothelial cells in vivo, and genetic or pharmacological FAK inhibition blocked VCAM-1 expression during development. FAK signaling facilitated TNF-α-induced, mitogen-activated protein kinase activation, and, surprisingly, FAK inhibition resulted in the loss of the GATA4 transcription factor required for TNF-α-induced VCAM-1 production. FAK inhibition also triggered FAK nuclear localization. In the nucleus, the FAK-FERM (band 4.1, ezrin, radixin, moesin homology) domain bound directly to GATA4 and enhanced its CHIP (C terminus of Hsp70-interacting protein) E3 ligase-dependent polyubiquitination and degradation. These studies reveal new developmental and anti-inflammatory roles for kinase-inhibited FAK in limiting VCAM-1 production via nuclear localization and promotion of GATA4 turnover.


Assuntos
Núcleo Celular/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Células Cultivadas , Embrião de Mamíferos/metabolismo , Ativação Enzimática , Quinase 1 de Adesão Focal/genética , Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Camundongos Transgênicos , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitinação
10.
PLoS One ; 7(5): e37830, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22649559

RESUMO

BACKGROUND: Cell migration is a highly regulated process that involves the formation and turnover of cell-matrix contact sites termed focal adhesions. Rho-family GTPases are molecular switches that regulate actin and focal adhesion dynamics in cells. Guanine nucleotide exchange factors (GEFs) activate Rho-family GTPases. Rgnef (p190RhoGEF) is a ubiquitous 190 kDa GEF implicated in the control of colon carcinoma and fibroblast cell motility. PRINCIPAL FINDINGS: Rgnef exon 24 floxed mice (Rgnef(flox)) were created and crossed with cytomegalovirus (CMV)-driven Cre recombinase transgenic mice to inactivate Rgnef expression in all tissues during early development. Heterozygous Rgnef(WT/flox) (Cre+) crosses yielded normal Mendelian ratios at embryonic day 13.5, but Rgnef(flox/flox) (Cre+) mice numbers at 3 weeks of age were significantly less than expected. Rgnef(flox/flox) (Cre+) (Rgnef-/-) embryos and primary mouse embryo fibroblasts (MEFs) were isolated and verified to lack Rgnef protein expression. When compared to wildtype (WT) littermate MEFs, loss of Rgnef significantly inhibited haptotaxis migration, wound closure motility, focal adhesion number, and RhoA GTPase activation after fibronectin-integrin stimulation. In WT MEFs, Rgnef activation occurs within 60 minutes upon fibronectin plating of cells associated with RhoA activation. Rgnef-/- MEF phenotypes were rescued by epitope-tagged Rgnef re-expression. CONCLUSIONS: Rgnef-/- MEF phenotypes were due to Rgnef loss and support an essential role for Rgnef in RhoA regulation downstream of integrins in control of cell migration.


Assuntos
Movimento Celular/fisiologia , Adesões Focais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Cicatrização/fisiologia , ras-GRF1/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Análise de Variância , Animais , Primers do DNA/genética , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Imunofluorescência , Genótipo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Imuno-Histoquímica , Integrinas/genética , Integrinas/metabolismo , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , ras-GRF1/metabolismo
11.
Cancer Res ; 71(2): 360-70, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21224360

RESUMO

Focal adhesion kinase (FAK) functions downstream of integrins and growth factor receptors to promote tumor cell motility and invasion. In colorectal cancer, FAK is activated by amidated gastrin, a protumorigenic hormone. However, it is unclear how FAK receives signals from the gastrin receptor or other G-protein-coupled receptors that can promote cell motility and invasion. The Rho guanine-nucleotide exchange factor p190RhoGEF (Rgnef) binds FAK and facilitates fibroblast focal adhesion formation on fibronectin. Here we report that Rgnef mRNA and protein expression are significantly increased during colorectal tumor progression. In human colon carcinoma cells, Rgnef forms a complex with FAK and upon gastrin stimulation, FAK translocates to newly-forming focal adhesions where it facilitates tyrosine phosphorylation of paxillin. short hairpin (shRNA)-mediated knockdown of Rgnef or FAK, or pharmacological inhibition of FAK activity, is sufficient to block gastrin-stimulated paxillin phosphorylation, cell motility, and invadopodia formation in a manner dependent upon upstream cholecystokinin-2 receptor expression. Overexpression of the C-terminal region of Rgnef (Rgnef-C, amino acid 1,279-1,582) but not Rgnef-CΔFAK (amino acid 1,302-1,582 lacking the FAK binding site) disrupted endogenous Rgnef-FAK interaction and prevented paxillin phosphorylation and cell motility stimulated by gastrin. Rgnef-C-expressing cells formed smaller, less invasive tumors with reduced tyrosine phosphorylation of paxillin upon orthotopic implantation, compared with Rgnef-CΔFAK-expressing cells. Our studies identify Rgnef as a novel regulator of colon carcinoma motility and invasion, and they show that a Rgnef-FAK linkage promotes colon carcinoma progression in vivo.


Assuntos
Neoplasias Colorretais/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Sequência de Aminoácidos , Animais , Células CACO-2 , Movimento Celular/fisiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Progressão da Doença , Ativação Enzimática , Matriz Extracelular/metabolismo , Feminino , Quinase 1 de Adesão Focal/antagonistas & inibidores , Gastrinas/metabolismo , Técnicas de Silenciamento de Genes , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/biossíntese , Fatores de Troca do Nucleotídeo Guanina/genética , Células HCT116 , Humanos , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Paxilina/metabolismo , Fosforilação , Transdução de Sinais
12.
J Neurosci ; 31(2): 426-38, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21228153

RESUMO

The hypothalamus, pituitary, and gonads coordinate to direct the development and regulation of reproductive function in mammals. Control of the hypothalamic-pituitary-gonadal axis is dependent on correct migration of gonadotropin-releasing hormone (GnRH) neurons from the nasal placode to the hypothalamus, followed by proper synthesis and pulsatile secretion of GnRH, functions absent in patients with hypogonadal hypogonadism. In this study, we identify sine oculis-related homeobox 6 (Six6) as a novel factor necessary for proper targeting of GnRH expression to the limited population of GnRH neurons within the adult mouse hypothalamus and demonstrate that it is required for proper reproductive function in both male and female mice. Female Six6-null mice exhibit a striking decrease in fertility, failing to progress through the estrous cycle normally, show any signs of successful ovulation, or produce litters. Although basal gonadotropin production in these mice is relatively normal, analysis of GnRH expression reveals a dramatic decrease in total GnRH neuron numbers. We show that expression of Six6 is dramatically increased during GnRH neuronal maturation and that overexpression of Six6 induces GnRH transcription in neuronal cells. Finally, we demonstrate that this induction in GnRH expression is mediated via binding of Six6 to evolutionarily conserved ATTA sites located within the GnRH proximal promoter. Together, these data indicate that Six6 plays an important role in the regulation of GnRH expression and hypothalamic control of fertility.


Assuntos
Fertilidade/fisiologia , Hormônio Liberador de Gonadotropina/biossíntese , Proteínas de Homeodomínio/fisiologia , Hipotálamo/metabolismo , Reprodução/fisiologia , Transativadores/fisiologia , Animais , Linhagem Celular , Ciclo Estral/fisiologia , Feminino , Hormônio Liberador de Gonadotropina/genética , Proteínas de Homeodomínio/genética , Hipotálamo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/metabolismo , Ovulação/fisiologia , Gravidez , Regiões Promotoras Genéticas , Fatores Sexuais , Transativadores/genética , Transcrição Gênica
13.
Mol Endocrinol ; 24(10): 1949-64, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20667983

RESUMO

GnRH, the central regulator of reproductive function, is produced by only approximately 800 highly specialized hypothalamic neurons. Previous studies identified a minimal promoter [GnRH minimal promoter (GnRH-P)] (-173/+1) and a neuron-specific enhancer [GnRH-enhancer (E)1] (-1863/-1571) as regulatory regions in the rat gene that confer this stringent specificity of GnRH expression to differentiated GnRH neurons. In transgenic mice, these two elements target only GnRH neurons but fail to drive expression in the entire population, suggesting the existence of additional regulatory regions. Here, we define two novel, highly conserved, upstream enhancers in the GnRH gene termed GnRH-E2 (-3135/-2631) and GnRH-E3 (-4199/-3895) that increase neuron-specific GnRH expression through interactions with GnRH-E1 and GnRH-P. GnRH-E2 and GnRH-E3 regulate GnRH expression through similar mechanisms via Oct-1, Msx1, and Dlx2, which bind both GnRH-E2 and the GnRH-E3 critical region at -3952/-3895. Overexpression of Dlx2 increases transcription through GnRH-E2 and GnRH-E3. Remarkably, these novel elements are contained within the 3' untranslated region of the neighboring upstream gene, yet are marked endogenously by histone modification signatures consistent with those of enhancers. Thus, GnRH-E2 and GnRH-E3 are novel regulatory elements that, together with GnRH-E1 and GnRH-P, confer the specificity of GnRH expression to differentiated and mature GnRH neurons.


Assuntos
Elementos Facilitadores Genéticos , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Proteínas de Homeodomínio/metabolismo , Hipotálamo/metabolismo , Transcrição Gênica , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Linhagem Celular , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Dados de Sequência Molecular , Neurônios/metabolismo , Canais de Potássio/genética , Regiões Promotoras Genéticas , Ratos , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
J Biol Chem ; 285(28): 21526-36, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20442405

RESUMO

Focal adhesion kinase (FAK) associates with both integrins and growth factor receptors in the control of cell motility and survival. Loss of FAK during mouse development results in lethality at embryonic day 8.5 (E8.5) and a block in cell proliferation. Because FAK serves as both a scaffold and signaling protein, gene knock-outs do not provide mechanistic insights in distinguishing between these modes of FAK function. To determine the role of FAK activity during development, a knock-in point mutation (lysine 454 to arginine (R454)) within the catalytic domain was introduced by homologous recombination. Homozygous FAK(R454/R454) mutation was lethal at E9.5 with defects in blood vessel formation as determined by lack of yolk sac primary capillary plexus formation and disorganized endothelial cell patterning in FAK(R454/R454) embryos. In contrast to the inability of embryonic FAK(-/-) cells to proliferate ex vivo, primary FAK(R454/R454) mouse embryo fibroblasts (MEFs) were established from E8.5 embryos. R454 MEFs exhibited no difference in cell growth compared with normal MEFs, and R454 FAK localized to focal adhesions but was not phosphorylated at Tyr-397. In E8.5 embryos and primary MEFs, FAK R454 mutation resulted in decreased c-Src Tyr-416 phosphorylation. R454 MEFs exhibited enhanced focal adhesion formation, decreased migration, and defects in cell polarity. Within immortalized MEFs, FAK activity was required for fibronectin-stimulated FAK-p190RhoGAP association and p190RhoGAP tyrosine phosphorylation linked to decreased RhoA GTPase activity, focal adhesion turnover, and directional motility. Our results establish that intrinsic FAK activity is essential for developmental processes controlling blood vessel formation and cell motility-polarity but not cell proliferation. This work supports the use of FAK inhibitors to disrupt neovascularization.


Assuntos
Vasos Sanguíneos/enzimologia , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Mutação , Animais , Vasos Sanguíneos/metabolismo , Movimento Celular , Proliferação de Células , Fibronectinas/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Complexo de Golgi/metabolismo , Homozigoto , Camundongos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Recombinação Genética , Proteínas Repressoras/metabolismo
15.
J Biol Chem ; 285(3): 1743-53, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19880522

RESUMO

Pyk2 is a cytoplasmic tyrosine kinase related to focal adhesion kinase (FAK). Compensatory Pyk2 expression occurs upon FAK loss in mice. However, the impact of Pyk2 up-regulation remains unclear. Previous studies showed that nuclear-localized FAK promotes cell proliferation and survival through FAK FERM domain-enhanced p53 tumor suppressor degradation (Lim, S. T., Chen, X. L., Lim, Y., Hanson, D. A., Vo, T. T., Howerton, K., Larocque, N., Fisher, S. J., Schlaepfer, D. D., and Ilic, D. (2008) Mol. Cell 29, 9-22). Here, we show that FAK knockdown triggered p53 activation and G(1) cell cycle arrest in human umbilical vein endothelial cells after 4 days. However, by 7 days elevated Pyk2 expression occurred with a reduction in p53 levels and the release of the G(1) block under conditions of continued FAK knockdown. To determine whether Pyk2 regulates p53, experiments were performed in FAK(-/-)p21(-/-) mouse embryo fibroblasts expressing endogenous Pyk2 and in ID8 ovarian carcinoma cells expressing both Pyk2 and FAK. In both cell lines, Pyk2 knockdown increased p53 levels and inhibited cell proliferation associated with G(1) cell cycle arrest. Pyk2 FERM domain re-expression was sufficient to reduce p53 levels and promote increased BrdUrd incorporation. Pyk2 FERM promoted Mdm2-dependent p53 ubiquitination. Pyk2 FERM effects on p53 were blocked by proteasomal inhibition or mutational-inactivation of Pyk2 FERM nuclear localization. Staurosporine stress of ID8 cells promoted endogenous Pyk2 nuclear accumulation and enhanced Pyk2 binding to p53. Pyk2 knockdown potentiated ID8 cell death upon staurosporine addition. Moreover, Pyk2 FERM expression in human fibroblasts upon FAK knockdown prevented cisplatin-mediated apoptosis. Our studies demonstrate that nuclear Pyk2 functions to limit p53 levels, thus facilitating cell growth and survival in a kinase-independent manner.


Assuntos
Adaptação Fisiológica , Quinase 2 de Adesão Focal/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Bromodesoxiuridina/metabolismo , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Quinase 2 de Adesão Focal/química , Quinase 2 de Adesão Focal/deficiência , Quinase 2 de Adesão Focal/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Mutação , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Estaurosporina/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
16.
Hum Mol Genet ; 18(2): 248-60, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18930956

RESUMO

Prader-Willi syndrome (PWS) is a complex genetic disorder characterized by hyperphagia, obesity and hypogonadotrophic hypogonadism, all highly suggestive of hypothalamic dysfunction. The NDN gene, encoding the MAGE family protein, necdin, maps to the PWS chromosome region and is highly expressed in mature hypothalamic neurons. Adult mice lacking necdin have reduced numbers of gonadotropin-releasing hormone (GnRH) neurons, but the mechanism for this reduction is unknown. Herein, we show that, although necdin is not expressed in an immature, migratory GnRH neuronal cell line (GN11), high levels are present in a mature GnRH neuronal cell line (GT1-7). Furthermore, overexpression of necdin activates GnRH transcription through cis elements bound by the homeodomain repressor Msx that are located in the enhancer and promoter of the GnRH gene, and knock-down of necdin expression reduces GnRH gene expression. In fact, overexpression of Necdin relieves Msx repression of GnRH transcription through these elements and necdin co-immunoprecipitates with Msx from GnRH neuronal cells, indicating that necdin may activate GnRH gene expression by preventing repression of GnRH gene expression by Msx. Finally, necdin is necessary for generation of the full complement of GnRH neurons during mouse development and extension of GnRH axons to the median eminence. Together, these results indicate that lack of necdin during development likely contributes to the hypogonadotrophic hypogonadal phenotype in individuals with PWS.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hormônio Liberador de Gonadotropina/genética , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/crescimento & desenvolvimento , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Síndrome de Prader-Willi/metabolismo , Animais , Linhagem Celular , Hormônio Liberador de Gonadotropina/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Proteínas Nucleares/genética , Síndrome de Prader-Willi/embriologia , Síndrome de Prader-Willi/genética , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
17.
J Biol Chem ; 280(35): 30975-83, 2005 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-16002402

RESUMO

Gonadotropin-releasing hormone (GnRH) is exclusively expressed in a unique population of hypothalamic neurons that controls reproductive function. GnRH gene expression is highly dynamic. Its transcriptional activity is regulated in a complex spatiotemporal manner during embryonic development and postnatal life. Although a variety of transcription factors have been identified as regulators of GnRH transcription, most are promiscuous in their DNA-binding requirements, and none are solely expressed in GnRH neurons. Their specific activity is probably determined by interactions with distinct cofactors. Here we find that the Groucho-related gene (GRG) family of co-repressors is expressed in a model cell line for the GnRH neuron and co-expresses with GnRH during prenatal development. GRG proteins associate in vivo with the GnRH promoter. Furthermore, GRG proteins interact with two regulators of GnRH transcription, the homeodomain proteins MSX1 and OCT1. Co-transfection experiments indicate that GRG proteins regulate GnRH promoter activity. The long GRG forms enhance MSX1 repression and counteract OCT1 activation of the GnRH gene. In contrast, the short form, GRG5, has a dominant-negative effect on MSX1-dependent repression. Taken together, these data suggest that the dynamic switch between activation and repression of GnRH transcription is mediated by recruitment of the GRG co-regulators.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Hormônio Liberador de Gonadotropina/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Proteínas Correpressoras , Proteínas de Ligação a DNA/genética , Hormônio Liberador de Gonadotropina/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Hibridização In Situ , Fator de Transcrição MSX1 , Substâncias Macromoleculares , Camundongos , Família Multigênica , Neurônios/citologia , Neurônios/metabolismo , Fator 1 de Transcrição de Octâmero , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
18.
Mol Endocrinol ; 18(12): 2950-66, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15319450

RESUMO

Reproductive function is controlled by the hypothalamic neuropeptide, GnRH, which serves as the central regulator of the hypothalamic-pituitary-gonadal axis. GnRH expression is limited to a small population of neurons in the hypothalamus. Targeting this minute population of neurons (as few as 800 in the mouse) requires regulatory elements upstream of the GnRH gene that remain to be fully characterized. Previously, we have identified an evolutionarily conserved promoter region (-173 to +1) and an enhancer (-1863 to -1571) in the rat gene that targets a subset of the GnRH neurons in vivo. In the present study, we used phylogenetic sequence comparison between human and rodents and analysis of the transcription factor clusters within conserved regions in an attempt to identify additional upstream regulatory elements. This approach led to the characterization of a new upstream enhancer that regulates expression of GnRH in a cell-specific manner. Within this upstream enhancer are nine binding sites for Octamer-binding transcription factor 1 (OCT1), known to be an important transcriptional regulator of GnRH gene expression. In addition, we have identified nuclear factor I (NF1) binding to multiple elements in the GnRH-regulatory regions, each in close proximity to OCT1. We show that OCT1 and NF1 physically and functionally interact. Moreover, the OCT1 and NF1 binding sites in the regulatory regions appear to be essential for appropriate GnRH gene expression. These findings indicate a role for this upstream enhancer and novel OCT1/NF1 complexes in neuron-restricted expression of the GnRH gene.


Assuntos
Elementos Facilitadores Genéticos/genética , Evolução Molecular , Regulação da Expressão Gênica/genética , Hormônio Liberador de Gonadotropina/genética , Filogenia , Animais , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , Sequência Conservada/genética , Pegada de DNA , Humanos , Camundongos , Dados de Sequência Molecular , Neurofibromina 1/metabolismo , Neurofibromina 1/fisiologia , Transportador 1 de Cátions Orgânicos/metabolismo , Transportador 1 de Cátions Orgânicos/fisiologia , Ratos , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...