Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400099

RESUMO

Pseudomonas aeruginosa (Pa), a WHO priority 1 pathogen, resulted in approximately 559,000 deaths globally in 2019. Pa has a multitude of host-immune evasion strategies that enhance Pa virulence. Most clinical isolates of Pa are infected by a phage called Pf that has the ability to misdirect the host-immune response and provide structural integrity to biofilms. Previous studies demonstrate that vaccination against the coat protein (CoaB) of Pf4 virions can assist in the clearance of Pa from the dorsal wound model in mice. Here, a consensus peptide was derived from CoaB and conjugated to cross-reacting material 197 (CRM197). This conjugate was adjuvanted with a novel synthetic Toll-like receptor agonist (TLR) 4 agonist, INI-2002, and used to vaccinate mice. Mice vaccinated with CoaB-CRM conjugate and INI-2002 developed high anti-CoaB peptide-specific IgG antibody titers. Direct binding of the peptide-specific antibodies to whole-phage virus particles was demonstrated by ELISA. Furthermore, a functional assay demonstrated that antibodies generated from vaccinated mice disrupted the replicative cycle of Pf phages. The use of an adjuvanted phage vaccine targeting Pa is an innovative vaccine strategy with the potential to become a new tool targeting multi-drug-resistant Pa infections in high-risk populations.

2.
Curr Opin Biotechnol ; 85: 103040, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103518

RESUMO

CRISPR-based genome editing holds promise for addressing genetic disease, infectious disease, and cancer and has rapidly advanced from primary research to clinical trials in recent years. However, the lack of safe and potent in vivo delivery methods for CRISPR components has limited most ongoing clinical trials to ex vivo gene therapy. Effective CRISPR in vivo genome editing necessitates an effective vehicle ensuring target cell transduction while minimizing off-target effects, toxicity, and immune reactions. In this review, we examine promising biological-derived platforms to deliver DNA editing agents in vivo and the engineering thereof, encompassing potent viral-based vehicles, flexible protein nanocages, and mammalian-derived particles.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Terapia Genética/métodos , Mamíferos
3.
NPJ Vaccines ; 8(1): 107, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488109

RESUMO

Opioid use disorders (OUD) and overdose are public health threats worldwide. Widespread access to highly potent illicit synthetic opioids such as fentanyl is driving the recent rise in fatal overdoses. Vaccines containing fentanyl-based haptens conjugated to immunogenic carrier proteins offer a long-lasting, safe, and cost-effective strategy to protect individuals from overdose upon accidental or deliberate exposure to fentanyl and its analogs. Prophylactic or therapeutic active immunization with an anti-fentanyl vaccine induces the production of fentanyl-specific antibodies that bind the drug in the blood and prevent its distribution to the brain, which reduces its reinforcing effects and attenuates respiratory depression and bradycardia. To increase the efficacy of a lead anti-fentanyl vaccine, this study tested whether the incorporation of synthetic toll-like receptor (TLR) 4 and TLR7/8 agonists as vaccine adjuvants would increase vaccine efficacy against fentanyl challenge, overdose, and self-administration in either rats or Hanford miniature pigs. Formulation of the vaccine with a nucleolipid TLR7/8 agonist enhanced its immunogenicity and efficacy in preventing fentanyl-induced respiratory depression, analgesia, bradycardia, and self-administration in either rats or mini-pigs. These studies support the use of TLR7/8 adjuvants in vaccine formulations to improve their clinical efficacy against OUD and potentially other substance use disorders (SUD).

4.
NPJ Vaccines ; 8(1): 97, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429853

RESUMO

Opioid use disorders (OUD) and opioid-related fatal overdoses are a public health concern in the United States. Approximately 100,000 fatal opioid-related overdoses occurred annually from mid-2020 to the present, the majority of which involved fentanyl or fentanyl analogs. Vaccines have been proposed as a therapeutic and prophylactic strategy to offer selective and long-lasting protection against accidental or deliberate exposure to fentanyl and closely related analogs. To support the development of a clinically viable anti-opioid vaccine suitable for human use, the incorporation of adjuvants will be required to elicit high titers of high-affinity circulating antibodies specific to the target opioid. Here we demonstrate that the addition of a synthetic TLR7/8 agonist, INI-4001, but not a synthetic TLR4 agonist, INI-2002, to a candidate conjugate vaccine consisting of a fentanyl-based hapten, F1, conjugated to the diphtheria cross-reactive material (CRM), significantly increased generation of high-affinity F1-specific antibody concentrations, and reduced drug distribution to the brain after fentanyl administration in mice.

5.
Nat Biotechnol ; 41(1): 96-107, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36076084

RESUMO

Despite the availability of Cas9 variants with varied protospacer-adjacent motif (PAM) compatibilities, some genomic loci-especially those with pyrimidine-rich PAM sequences-remain inaccessible by high-activity Cas9 proteins. Moreover, broadening PAM sequence compatibility through engineering can increase off-target activity. With directed evolution, we generated four Cas9 variants that together enable targeting of most pyrimidine-rich PAM sequences in the human genome. Using phage-assisted noncontinuous evolution and eVOLVER-supported phage-assisted continuous evolution, we evolved Nme2Cas9, a compact Cas9 variant, into variants that recognize single-nucleotide pyrimidine-PAM sequences. We developed a general selection strategy that requires functional editing with fully specified target protospacers and PAMs. We applied this selection to evolve high-activity variants eNme2-T.1, eNme2-T.2, eNme2-C and eNme2-C.NR. Variants eNme2-T.1 and eNme2-T.2 offer access to N4TN PAM sequences with comparable editing efficiencies as existing variants, while eNme2-C and eNme2-C.NR offer less restrictive PAM requirements, comparable or higher activity in a variety of human cell types and lower off-target activity at N4CN PAM sequences.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Genoma Humano/genética , Pirimidinas
6.
Front Immunol ; 12: 740117, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759923

RESUMO

Tuberculosis (TB) remains one of the leading causes of death worldwide due to a single infectious disease agent. BCG, the only licensed vaccine against TB, offers limited protection against pulmonary disease in children and adults. TB vaccine research has recently been reinvigorated by new data suggesting alternative administration of BCG induces protection and a subunit/adjuvant vaccine that provides close to 50% protection. These results demonstrate the need for generating adjuvants in order to develop the next generation of TB vaccines. However, development of TB-targeted adjuvants is lacking. To help meet this need, NIAID convened a workshop in 2020 titled "Advancing Vaccine Adjuvants for Mycobacterium tuberculosis Therapeutics". In this review, we present the four areas identified in the workshop as necessary for advancing TB adjuvants: 1) correlates of protective immunity, 2) targeting specific immune cells, 3) immune evasion mechanisms, and 4) animal models. We will discuss each of these four areas in detail and summarize what is known and what we can advance on in order to help develop more efficacious TB vaccines.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Mycobacterium tuberculosis/fisiologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/imunologia , Animais , Congressos como Assunto , Modelos Animais de Doenças , Humanos , Evasão da Resposta Imune , Imunidade , National Institute of Allergy and Infectious Diseases (U.S.) , Tuberculose/terapia , Estados Unidos
7.
Nature ; 595(7866): 295-302, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34079130

RESUMO

Sickle cell disease (SCD) is caused by a mutation in the ß-globin gene HBB1. We used a custom adenine base editor (ABE8e-NRCH)2,3 to convert the SCD allele (HBBS) into Makassar ß-globin (HBBG), a non-pathogenic variant4,5. Ex vivo delivery of mRNA encoding the base editor with a targeting guide RNA into haematopoietic stem and progenitor cells (HSPCs) from patients with SCD resulted in 80% conversion of HBBS to HBBG. Sixteen weeks after transplantation of edited human HSPCs into immunodeficient mice, the frequency of HBBG was 68% and hypoxia-induced sickling of bone marrow reticulocytes had decreased fivefold, indicating durable gene editing. To assess the physiological effects of HBBS base editing, we delivered ABE8e-NRCH and guide RNA into HSPCs from a humanized SCD mouse6 and then transplanted these cells into irradiated mice. After sixteen weeks, Makassar ß-globin represented 79% of ß-globin protein in blood, and hypoxia-induced sickling was reduced threefold. Mice that received base-edited HSPCs showed near-normal haematological parameters and reduced splenic pathology compared to mice that received unedited cells. Secondary transplantation of edited bone marrow confirmed that the gene editing was durable in long-term haematopoietic stem cells and showed that HBBS-to-HBBG editing of 20% or more is sufficient for phenotypic rescue. Base editing of human HSPCs avoided the p53 activation and larger deletions that have been observed following Cas9 nuclease treatment. These findings point towards a one-time autologous treatment for SCD that eliminates pathogenic HBBS, generates benign HBBG, and minimizes the undesired consequences of double-strand DNA breaks.


Assuntos
Adenina/metabolismo , Anemia Falciforme/genética , Anemia Falciforme/terapia , Edição de Genes , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Globinas beta/genética , Animais , Antígenos CD34/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Modelos Animais de Doenças , Feminino , Terapia Genética , Genoma Humano/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/patologia , Humanos , Masculino , Camundongos
8.
Nat Protoc ; 15(12): 4101-4127, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33199872

RESUMO

Directed evolution, which applies the principles of Darwinian evolution to a laboratory setting, is a powerful strategy for generating biomolecules with diverse and tailored properties. This technique can be implemented in a highly efficient manner using continuous evolution, which enables the steps of directed evolution to proceed seamlessly over many successive generations with minimal researcher intervention. Phage-assisted continuous evolution (PACE) enables continuous directed evolution in bacteria by mapping the steps of Darwinian evolution onto the bacteriophage life cycle and allows directed evolution to occur on much faster timescales compared to conventional methods. This protocol provides detailed instructions on evolving proteins using PACE and phage-assisted non-continuous evolution (PANCE) and includes information on the preparation of selection phage and host cells, the assembly of a continuous flow apparatus and the performance and analysis of evolution experiments. This protocol can be performed in as little as 2 weeks to complete more than 100 rounds of evolution (complete cycles of mutation, selection and replication) in a single PACE experiment.


Assuntos
Bacteriófagos/genética , Evolução Molecular Direcionada/métodos
9.
Bioorg Med Chem ; 28(14): 115564, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32616186

RESUMO

6,6'-Aryl trehalose derivatives have been synthesized with a view towards identifying novel Th-17-inducing vaccine adjuvants based on the high affinity Mincle ligand Brartemicin. The initial structure-activity relationships of these novel trehalose-based compounds were investigated. All compounds have been evaluated for their ability to engage the Mincle receptor and induce a potential pro-Th17 cytokine profile from human peripheral blood mononuclear cells based on IL-6 production in human peripheral blood mononuclear cells. The preliminary biological characterization of the designed analogs presented in this paper should aid in the future design and testing of more affine ligands that may foster the discovery of novel adjuvants with improved pharmacological properties.


Assuntos
Lectinas Tipo C/metabolismo , Receptores Imunológicos/metabolismo , Trealose/farmacologia , Relação Dose-Resposta a Droga , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Ligantes , Estrutura Molecular , Relação Estrutura-Atividade , Trealose/análogos & derivados , Trealose/química
10.
Front Immunol ; 11: 406, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210973

RESUMO

Most licensed seasonal influenza vaccines are non-adjuvanted and rely primarily on vaccine-induced antibody titers for protection. As such, seasonal antigenic drift and suboptimal vaccine strain selection often results in reduced vaccine efficacy. Further, seasonal H3N2 influenza vaccines demonstrate poor efficacy compared to H1N1 and influenza type B vaccines. New vaccines, adjuvants, or delivery technologies that can induce broader or cross-seasonal protection against drifted influenza virus strains, likely through induction of protective T cell responses, are urgently needed. Here, we report novel lipidated TLR7/8 ligands that act as strong adjuvants to promote influenza-virus specific Th1-and Th17-polarized T cell responses and humoral responses in mice with no observable toxicity. Further, the adjuvanted influenza vaccine provided protection against a heterologous H3N2 influenza challenge in mice. These responses were further enhanced when combined with a synthetic TLR4 ligand adjuvant. Despite differences between human and mouse TLR7/8, these novel lipidated imidazoquinolines induced the production of cytokines required to polarize a Th1 and Th17 immune response in human PBMCs providing additional support for further development of these compounds as novel adjuvants for the induction of broad supra-seasonal protection from influenza virus.


Assuntos
Imidazóis/imunologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Vírus da Influenza B/fisiologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/imunologia , Quinolinas/imunologia , Células Th1/imunologia , Células Th17/imunologia , Adjuvantes Imunológicos , Animais , Reações Cruzadas , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Imidazóis/síntese química , Imunidade Heteróloga , Imunidade Humoral , Lipídeos/síntese química , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Quinolinas/síntese química , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas
11.
Bioorg Med Chem Lett ; 30(6): 126984, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32001135

RESUMO

Toll-like receptors 7 and 8 (TLR7/8) agonists are potent immunostimulants that are attracting considerable interest as vaccine adjuvants. We recently reported the synthesis of a new series of 2-O-butyl-8-oxoadenines substituted at the 9-position with various linkers and N-heterocycles, and showed that TLR7/8 selectivity, potency and cytokine induction could be modulated by varying the alkyl linker length and the N-heterocyclic ring. In the present study, we further optimized the oxoadenine scaffold by investigating the effect of different substituents at the 2-position of the oxoadenine on TLR7/8 potency/selectivity, cytokine induction and DC maturation in human PBMCs. The results show that introducing a 1-(S)-methylbutoxy group at the 2-position of the oxoadenine significantly increased potency for TLR7/8 activity, cytokine induction and DC maturation.


Assuntos
Adenina/análogos & derivados , Adjuvantes Imunológicos/química , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Adenina/química , Adenina/imunologia , Adjuvantes Imunológicos/metabolismo , Citocinas/metabolismo , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Quinolinas/química , Relação Estrutura-Atividade
12.
Nat Biotechnol ; 38(4): 471-481, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32042170

RESUMO

The targeting scope of Streptococcus pyogenes Cas9 (SpCas9) and its engineered variants is largely restricted to protospacer-adjacent motif (PAM) sequences containing G bases. Here we report the evolution of three new SpCas9 variants that collectively recognize NRNH PAMs (where R is A or G and H is A, C or T) using phage-assisted non-continuous evolution, three new phage-assisted continuous evolution strategies for DNA binding and a secondary selection for DNA cleavage. The targeting capabilities of these evolved variants and SpCas9-NG were characterized in HEK293T cells using a library of 11,776 genomically integrated protospacer-sgRNA pairs containing all possible NNNN PAMs. The evolved variants mediated indel formation and base editing in human cells and enabled A•T-to-G•C base editing of a sickle cell anemia mutation using a previously inaccessible CACC PAM. These new evolved SpCas9 variants, together with previously reported variants, in principle enable targeting of most NR PAM sequences and substantially reduce the fraction of genomic sites that are inaccessible by Cas9-based methods.


Assuntos
Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , DNA/genética , DNA/metabolismo , Clivagem do DNA , Evolução Molecular Direcionada , Edição de Genes , Variação Genética , Genoma Humano/genética , Células HEK293 , Humanos , Mutação , Motivos de Nucleotídeos , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/genética , Especificidade por Substrato
13.
J Med Chem ; 63(1): 309-320, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31809053

RESUMO

Mycobacterium tuberculosis (Mtb) continues to be a major health threat worldwide, and the development of Mtb vaccines could play a pivotal role in the prevention and control of this devastating epidemic. Th17-mediated immunity has been implicated in disease protection correlates of immune protection against Mtb. Currently, there are no approved adjuvants capable of driving a Th17 response in a vaccine setting. Recent clinical trial results using trehalose dibehenate have demonstrated a formulation-dependant proof of concept adjuvant system CAF01 capable of inducing long-lived protection. We have discovered a new class of Th17-inducing vaccine adjuvants based on the natural product Brartemicin. We synthesized and evaluated the capacity of a library of aryl trehalose derivatives to drive immunostimulatory reresponses and evaluated the structure-activity relationships in terms of the ability to engage the Mincle receptor and induce production of innate cytokines from human and murine cells. We elaborated on the structure-activity relationship of the new scaffold and demonstrated the ability of the lead entity to induce a pro-Th17 cytokine profile from primary human peripheral blood mononuclear cells and demonstrated efficacy in generating antibodies in combination with tuberculosis antigen M72 in a mouse model.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Trealose/análogos & derivados , Adjuvantes Imunológicos/síntese química , Adjuvantes Imunológicos/metabolismo , Animais , Sítios de Ligação , Bovinos , Linhagem Celular , Feminino , Humanos , Lectinas Tipo C/agonistas , Lectinas Tipo C/metabolismo , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Estrutura Molecular , Receptores Imunológicos/agonistas , Receptores Imunológicos/metabolismo , Relação Estrutura-Atividade , Trealose/síntese química , Trealose/metabolismo , Trealose/uso terapêutico , Tuberculose/terapia , Vacinas contra a Tuberculose/uso terapêutico
14.
J Control Release ; 315: 186-196, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31654684

RESUMO

To increase vaccine immunogenicity, modern vaccines incorporate adjuvants, which serve to enhance immune cross-protection, improve humoral and cell-mediated immunity, and promote antigen dose sparing. Pattern recognition receptors (PRRs), including the Toll-like receptor (TLR) family are promising targets for development of agonist formulations for use as vaccine adjuvants. Combinations of co-delivered TLR4 and TLR7/8 ligands have been demonstrated to have synergistic effects on innate and adaptive immune response. Here, we create liposomes that stably co-encapsulate CRX-601, a synthetic TLR4 agonist, and UM-3004, a lipidated TLR7/8 agonist, within the liposomal bilayer in order to achieve co-delivery, allow tunable physical properties, and induce in vitro and in vivo immune synergy. Co-encapsulation demonstrates a synergistic increase in IL-12p70 cytokine output in vitro from treated human peripheral blood mononuclear cells (hPBMCs). Further, co-encapsulated formulations give significant improvement of early IgG2a antibody titers in BALB/c mice following primary vaccination when compared to single agonist or dual agonists delivered in separate liposomes. This work demonstrates that co-encapsulation of TLR4 and lipidated TLR7/8 agonists within the liposomal bilayer leads to innate and adaptive immune synergy which biases a Th1 immune response. Thus, liposomal co-encapsulation may be a useful and flexible tool for vaccine adjuvant formulation containing multiple TLR agonists.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Imunidade Humoral/imunologia , Monossacarídeos/administração & dosagem , Vacinas/administração & dosagem , Animais , Sistemas de Liberação de Medicamentos , Sinergismo Farmacológico , Feminino , Compostos Heterocíclicos com 3 Anéis/imunologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Leucócitos Mononucleares/imunologia , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Monossacarídeos/imunologia , Monossacarídeos/farmacologia , Células Th1/imunologia , Receptor 4 Toll-Like/agonistas , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Vacinas/imunologia
15.
Nat Biotechnol ; 37(7): 820, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31182863

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Nat Biotechnol ; 37(6): 626-631, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31110355

RESUMO

Base editing requires that the target sequence satisfy the protospacer adjacent motif requirement of the Cas9 domain and that the target nucleotide be located within the editing window of the base editor. To increase the targeting scope of base editors, we engineered six optimized adenine base editors (ABEmax variants) that use SpCas9 variants compatible with non-NGG protospacer adjacent motifs. To increase the range of target bases that can be modified within the protospacer, we use circularly permuted Cas9 variants to produce four cytosine and four adenine base editors with an editing window expanded from ~4-5 nucleotides to up to ~8-9 nucleotides and reduced byproduct formation. This set of base editors improves the targeting scope of cytosine and adenine base editing.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Adenina/química , Citosina/química , Humanos , Nucleotídeos/química , Nucleotídeos/genética , Plasmídeos/química , Plasmídeos/genética
17.
Front Immunol ; 10: 338, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873180

RESUMO

Despite the ever present need for an effective Mycobacterium tuberculosis (Mtb) vaccine, efforts for development have been largely unsuccessful. Correlates of immune protection against Mtb are not wholly defined, but Th1 and likely Th17 adaptive immune responses have been demonstrated to be necessary for vaccine-mediated protection. Unfortunately, no approved adjuvants are able to drive a Th17 response, though recent clinical trials with CAF01 have demonstrated proof of concept. Herein we present the discovery and characterization of a new class of potential Th17-inducing vaccine adjuvants, alpha-branched trehalose diester molecules (αTDE). Based off the Mtb immunostimulatory component trehalose dimycolate (TDM), we synthesized and evaluated the immunostimulatory capacity of a library of structural derivatives. We evaluated the structure activity relationship of the compounds in relation to chain length and engagement of the Mincle receptor, production of innate cytokines from human and murine cells, and a pro-Th17 cytokine profile from primary human peripheral blood mononuclear cells. Murine cells displayed more structural tolerance, engaging and responding to a wide array of compound chain lengths. Interestingly, human cells displayed a unique specificity for ester chains between 5 and 14 carbons for maximal immune stimulating activity. Evaluation of two distinct αTDEs, B16 and B42, in concert with a recombinant Mtb antigen demonstrated their ability to augment a Th17 immune response against a Mtb antigen in vivo. Collectively this data describes the species-specific structural requirements for maximal human activity of alpha-branched trehalose diester compounds and demonstrates their capacity to serve as potent Th17-inducing adjuvants.


Assuntos
Fatores Corda/química , Fatores Corda/imunologia , Trealose/química , Trealose/imunologia , Adjuvantes Imunológicos , Animais , Linhagem Celular , Citocinas/metabolismo , Humanos , Imunidade Celular , Lectinas Tipo C , Camundongos , Estrutura Molecular , Mycobacterium tuberculosis/imunologia , Relação Estrutura-Atividade , Células Th17/imunologia , Células Th17/metabolismo
18.
Sci Rep ; 9(1): 1662, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733567

RESUMO

A particular challenge in genome engineering has been the simultaneous introduction of mutations into linked (located on the same chromosome) loci. Although CRISPR/Cas9 has been widely used to mutate individual sites, its application in simultaneously targeting of linked loci is limited as multiple nearby double-stranded DNA breaks created by Cas9 routinely result in the deletion of sequences between the cleavage sites. Base editing is a newer form of genome editing that directly converts C∙G-to-T∙A, or A∙T-to-G∙C, base pairs without introducing double-stranded breaks, thus opening the possibility to generate linked mutations without disrupting the entire locus. Through the co-injection of two base editors and two sgRNAs into mouse zygotes, we introduced C∙G-to-T∙A transitions into two cytokine-sensing transcription factor binding sites separated by 9 kb. We determined that one enhancer activates the two flanking genes in mammary tissue during pregnancy and lactation. The ability to introduce linked mutations simultaneously in one step into the mammalian germline has implications for a wide range of applications, including the functional analysis of linked cis-elements creating disease models and correcting pathogenic mutations.


Assuntos
Sistemas CRISPR-Cas , Embrião de Mamíferos/metabolismo , Edição de Genes/métodos , Loci Gênicos , Proteínas do Leite/genética , Proteína 3 Modificadora da Atividade de Receptores/genética , Zigoto/metabolismo , Animais , Sequência de Bases , Citidina Desaminase/metabolismo , Quebras de DNA de Cadeia Dupla , Embrião de Mamíferos/citologia , Feminino , Genoma , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Homologia de Sequência , Zigoto/citologia
19.
Nat Commun ; 9(1): 4804, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442934

RESUMO

Base editing directly converts a target base pair into a different base pair in the genome of living cells without introducing double-stranded DNA breaks. While cytosine base editors (CBE) and adenine base editors (ABE) are used to install and correct point mutations in a wide range of organisms, the extent and distribution of off-target edits in mammalian embryos have not been studied in detail. We analyze on-target and proximal off-target editing at 13 loci by a variety of CBEs and ABE in more than 430 alleles generated from mouse zygotic injections using newly generated and published sequencing data. ABE predominantly generates anticipated A•T-to-G•C edits. Among CBEs, SaBE3 and BE4, result in the highest frequencies of anticipated C•G-to-T•A products relative to editing byproducts. Together, these findings highlight the remarkable fidelity of ABE in mouse embryos and identify preferred CBE variants when fidelity in vivo is critical.


Assuntos
Adenina/metabolismo , Sistemas CRISPR-Cas , Citosina/metabolismo , Edição de Genes/métodos , Mutação Puntual , Alelos , Animais , Animais Geneticamente Modificados , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Embrião de Mamíferos , Loci Gênicos , Camundongos , Microinjeções , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Zigoto
20.
Nature ; 556(7699): 57-63, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29512652

RESUMO

A key limitation of the use of the CRISPR-Cas9 system for genome editing and other applications is the requirement that a protospacer adjacent motif (PAM) be present at the target site. For the most commonly used Cas9 from Streptococcus pyogenes (SpCas9), the required PAM sequence is NGG. No natural or engineered Cas9 variants that have been shown to function efficiently in mammalian cells offer a PAM less restrictive than NGG. Here we use phage-assisted continuous evolution to evolve an expanded PAM SpCas9 variant (xCas9) that can recognize a broad range of PAM sequences including NG, GAA and GAT. The PAM compatibility of xCas9 is the broadest reported, to our knowledge, among Cas9 proteins that are active in mammalian cells, and supports applications in human cells including targeted transcriptional activation, nuclease-mediated gene disruption, and cytidine and adenine base editing. Notably, despite its broadened PAM compatibility, xCas9 has much greater DNA specificity than SpCas9, with substantially lower genome-wide off-target activity at all NGG target sites tested, as well as minimal off-target activity when targeting genomic sites with non-NGG PAMs. These findings expand the DNA targeting scope of CRISPR systems and establish that there is no necessary trade-off between Cas9 editing efficiency, PAM compatibility and DNA specificity.


Assuntos
Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , DNA/genética , DNA/metabolismo , Edição de Genes/métodos , Mutação , Especificidade por Substrato/genética , Clivagem do DNA , Desoxirribonucleases/metabolismo , Evolução Molecular Direcionada , Genoma Humano/genética , Células HEK293 , Humanos , Motivos de Nucleotídeos , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/genética , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...