Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 13(7): 1696-1719, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37140445

RESUMO

TP53 is the most frequently mutated gene in cancer, yet key target genes for p53-mediated tumor suppression remain unidentified. Here, we characterize a rare, African-specific germline variant of TP53 in the DNA-binding domain Tyr107His (Y107H). Nuclear magnetic resonance and crystal structures reveal that Y107H is structurally similar to wild-type p53. Consistent with this, we find that Y107H can suppress tumor colony formation and is impaired for the transactivation of only a small subset of p53 target genes; this includes the epigenetic modifier PADI4, which deiminates arginine to the nonnatural amino acid citrulline. Surprisingly, we show that Y107H mice develop spontaneous cancers and metastases and that Y107H shows impaired tumor suppression in two other models. We show that PADI4 is itself tumor suppressive and that it requires an intact immune system for tumor suppression. We identify a p53-PADI4 gene signature that is predictive of survival and the efficacy of immune-checkpoint inhibitors. SIGNIFICANCE: We analyze the African-centric Y107H hypomorphic variant and show that it confers increased cancer risk; we use Y107H in order to identify PADI4 as a key tumor-suppressive p53 target gene that contributes to an immune modulation signature and that is predictive of cancer survival and the success of immunotherapy. See related commentary by Bhatta and Cooks, p. 1518. This article is highlighted in the In This Issue feature, p. 1501.


Assuntos
Genes p53 , Neoplasias , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , População Africana/genética , Neoplasias/genética , Proteína Supressora de Tumor p53/metabolismo
2.
bioRxiv ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36711508

RESUMO

RNA-binding proteins (RBPs) are key post-transcriptional regulators of gene expression, and thus underlie many important biological processes. Here, we developed a strategy that entails extracting a "hotspot pharmacophore" from the structure of a protein-RNA complex, to create a template for designing small-molecule inhibitors and for exploring the selectivity of the resulting inhibitors. We demonstrate this approach by designing inhibitors of Musashi proteins MSI1 and MSI2, key regulators of mRNA stability and translation that are upregulated in many cancers. We report this novel series of MSI1/MSI2 inhibitors is specific and active in biochemical, biophysical, and cellular assays. This study extends the paradigm of "hotspots" from protein-protein complexes to protein-RNA complexes, supports the "druggability" of RNA-binding protein surfaces, and represents one of the first rationally-designed inhibitors of non-enzymatic RNA-binding proteins. Owing to its simplicity and generality, we anticipate that this approach may also be used to develop inhibitors of many other RNA-binding proteins; we also consider the prospects of identifying potential off-target interactions by searching for other RBPs that recognize their cognate RNAs using similar interaction geometries. Beyond inhibitors, we also expect that compounds designed using this approach can serve as warheads for new PROTACs that selectively degrade RNA-binding proteins.

3.
Res Sq ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36711552

RESUMO

RNA-binding proteins (RBPs) are key post-transcriptional regulators of gene expression, and thus underlie many important biological processes. Here, we developed a strategy that entails extracting a "hotspot pharmacophore" from the structure of a protein-RNA complex, to create a template for designing small-molecule inhibitors and for exploring the selectivity of the resulting inhibitors. We demonstrate this approach by designing inhibitors of Musashi proteins MSI1 and MSI2, key regulators of mRNA stability and translation that are upregulated in many cancers. We report this novel series of MSI1/MSI2 inhibitors is specific and active in biochemical, biophysical, and cellular assays. This study extends the paradigm of "hotspots" from protein-protein complexes to protein-RNA complexes, supports the "druggability" of RNA-binding protein surfaces, and represents one of the first rationally-designed inhibitors of non-enzymatic RNA-binding proteins. Owing to its simplicity and generality, we anticipate that this approach may also be used to develop inhibitors of many other RNA-binding proteins; we also consider the prospects of identifying potential off-target interactions by searching for other RBPs that recognize their cognate RNAs using similar interaction geometries. Beyond inhibitors, we also expect that compounds designed using this approach can serve as warheads for new PROTACs that selectively degrade RNA-binding proteins.

4.
Cell Mol Life Sci ; 79(6): 285, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35532818

RESUMO

NSD1, NSD2, and NSD3 constitute the nuclear receptor-binding SET Domain (NSD) family of histone 3 lysine 36 (H3K36) methyltransferases. These structurally similar enzymes mono- and di-methylate H3K36, which contribute to the maintenance of chromatin integrity and regulate the expression of genes that control cell division, apoptosis, DNA repair, and epithelial-mesenchymal transition (EMT). Aberrant expression or mutation of members of the NSD family is associated with developmental defects and the occurrence of some types of cancer. In this review, we discuss the effect of alterations in NSDs on cancer patient's prognosis and response to treatment. We summarize the current understanding of the biological functions of NSD proteins, focusing on their activities and the role in the formation and progression in solid tumors biology, as well as how it depends on tumor etiologies. This review also discusses ongoing efforts to develop NSD inhibitors as a promising new class of cancer therapeutic agents.


Assuntos
Histona-Lisina N-Metiltransferase , Neoplasias , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo
5.
J Chem Inf Model ; 61(3): 1368-1382, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33625214

RESUMO

Proteolysis-targeting chimaeras (PROTACs) are molecules that combine a target-binding warhead with an E3 ligase-recruiting moiety; by drawing the target protein into a ternary complex with the E3 ligase, PROTACs induce target protein degradation. While PROTACs hold exciting potential as chemical probes and as therapeutic agents, development of a PROTAC typically requires synthesis of numerous analogs to thoroughly explore variations on the chemical linker; without extensive trial and error, it is unclear how to link the two protein-recruiting moieties to promote formation of a productive ternary complex. Here, we describe a structure-based computational method for evaluating the suitability of a given linker for ternary complex formation. Our method uses Rosetta to dock the protein components and then builds the PROTAC from its component fragments into each binding mode; complete models of the ternary complex are then refined. We apply this approach to retrospectively evaluate multiple PROTACs from the literature, spanning diverse target proteins. We find that modeling ternary complex formation is sufficient to explain both activity and selectivity reported for these PROTACs, implying that other cellular factors are not key determinants of activity in these cases. We further find that interpreting PROTAC activity is best approached using an ensemble of structures of the ternary complex rather than a single static conformation and that members of a structurally conserved protein family can be recruited by the same PROTAC through vastly different binding modes. To encourage adoption of these methods and promote further analyses, we disseminate both the computational methods and the models of ternary complexes.


Assuntos
Proteólise , Ubiquitina-Proteína Ligases , Estudos Retrospectivos , Ubiquitina-Proteína Ligases/metabolismo
6.
J Am Chem Soc ; 141(28): 11019-11026, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31283208

RESUMO

S-Adenosyl-l-methionine (SAM) is the central cofactor in the radical SAM enzyme superfamily, responsible for a vast number of transformations in primary and secondary metabolism. In nearly all of these reactions, the reductive cleavage of SAM is proposed to produce a reactive species, 5'-deoxyadenosyl radical, which initiates catalysis. While the mechanistic details in many cases are well-understood, the reductive cleavage of SAM remains elusive. In this manuscript, we have measured the solution peak potential of SAM to be ∼-1.4 V (v SHE) and show that under controlled potential conditions, it undergoes irreversible fragmentation to the 5'-deoxyadenosyl radical. While the radical intermediate is not directly observed, its presence as an initial intermediate is inferred by the formation of 8,5'-cycloadenosine and by H atom incorporation into 5'-deoxyadenosine from solvent exchangeable site. Similarly, 2-aminobutyrate is also observed under electrolysis conditions. The implications of these results in the context of the reductive cleavage of SAM by radical SAM enzymes are discussed.


Assuntos
Técnicas Eletroquímicas , Hidroliases/metabolismo , S-Adenosilmetionina/metabolismo , Radicais Livres/química , Radicais Livres/metabolismo , Hidroliases/química , Estrutura Molecular , S-Adenosilmetionina/síntese química , S-Adenosilmetionina/química
7.
J Mol Biol ; 430(3): 258-271, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29287967

RESUMO

Methyl-CpG binding proteins play an essential role in translating DNA methylation marks into a downstream transcriptional response, which has implications for both normal cell function as well as disease. Although for many of these proteins, a detailed mechanistic understanding for how this cellular process is mediated remains to be determined. ZBTB38 is an under-characterized member of the zinc finger (ZF) family of methyl-CpG binding proteins. Functional knowledge has been gained for its conserved methylated DNA binding N-terminal ZF region; however, a specific role for the C-terminal set of five ZFs remains to be elucidated. Here we demonstrate for the first time that a subset of the C-terminal ZBTB38 ZFs exhibit high-affinity DNA interactions and that preferential targeting of the consensus DNA site is methyl specific. Utilizing a hybrid approach, a model for the C-terminal ZBTB38 ZFs in complex with its cognate DNA target is proposed, providing insight into a possible novel mode of methylated DNA recognition. Furthermore, it is shown that the C-terminal ZFs of ZBTB38 can directly occupy promoters harboring the newly identified sequence motif in cell in a methyl-dependent manner and, depending on the gene context, contribute to modulating transcriptional response. Combined, these findings provide evidence for a key and novel physiological function for the C-terminal ZF domain of ZBTB38.


Assuntos
Metilação de DNA , DNA/metabolismo , Proteínas Repressoras/metabolismo , Dedos de Zinco , Sequência de Aminoácidos , Ilhas de CpG , DNA/química , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas Repressoras/química
8.
J Med Chem ; 59(9): 4152-70, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-26126123

RESUMO

Protein-protein interactions represent an exciting and challenging target class for therapeutic intervention using small molecules. Protein interaction sites are often devoid of the deep surface pockets presented by "traditional" drug targets, and crystal structures reveal that inhibitors typically engage these sites using very shallow binding modes. As a consequence, modern virtual screening tools developed to identify inhibitors of traditional drug targets do not perform as well when they are instead deployed at protein interaction sites. To address the need for novel inhibitors of important protein interactions, here we introduce an alternate docking strategy specifically designed for this regime. Our method, termed DARC (Docking Approach using Ray-Casting), matches the topography of a surface pocket "observed" from within the protein to the topography "observed" when viewing a potential ligand from the same vantage point. We applied DARC to carry out a virtual screen against the protein interaction site of human antiapoptotic protein Mcl-1 and found that four of the top-scoring 21 compounds showed clear inhibition in a biochemical assay. The Ki values for these compounds ranged from 1.2 to 21 µM, and each had ligand efficiency comparable to promising small-molecule inhibitors of other protein-protein interactions. These hit compounds do not resemble the natural (protein) binding partner of Mcl-1, nor do they resemble any known inhibitors of Mcl-1. Our results thus demonstrate the utility of DARC for identifying novel inhibitors of protein-protein interactions.


Assuntos
Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Propriedades de Superfície
9.
J Virol ; 87(8): 4545-57, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23408610

RESUMO

Dengue virus (DENV) is an important human pathogen, especially in the tropical and subtropical parts of the world, causing considerable morbidity and mortality. DENV replication occurs in the cytoplasm; however, a high proportion of nonstructural protein 5 (NS5), containing methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) activities, accumulates in the nuclei of infected cells. The present study investigates the impact of nuclear localization of NS5 on its known functions, including viral RNA replication and subversion of the type I interferon response. By using a mutation analysis approach, we identified the most critical residues within the αß nuclear localization signal (αßNLS), which are essential for the nuclear accumulation of this protein. Although we observed an overall correlation between reduced nuclear accumulation of NS5 and impaired RNA replication, we identified one mutant with drastically reduced amounts of nuclear NS5 and virtually unaffected RNA replication, arguing that nuclear localization of NS5 does not correlate strictly with DENV replication, at least in cell culture. Because NS5 plays an important role in blocking interferon signaling via STAT-2 (signal transducer and activator of transcription 2) degradation, the abilities of the NLS mutants to block this pathway were investigated. All mutants were able to degrade STAT-2, with accordingly similar type I interferon resistance phenotypes. Since the NLS is contained within the RdRp domain, the MTase and RdRp activities of the mutants were determined by using recombinant full-length NS5. We found that the C-terminal region of the αßNLS is a critical functional element of the RdRp domain required for polymerase activity. These results indicate that efficient DENV RNA replication requires only minimal, if any, nuclear NS5, and they identify the αßNLS as a structural element required for proper RdRp activity.


Assuntos
Núcleo Celular/metabolismo , Vírus da Dengue/fisiologia , Interferon Tipo I/antagonistas & inibidores , RNA Viral/metabolismo , Transdução de Sinais , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Análise Mutacional de DNA , Interações Hospedeiro-Patógeno , Humanos , Sinais de Localização Nuclear , Proteólise , Fator de Transcrição STAT2/metabolismo
10.
Cell Host Microbe ; 5(4): 365-75, 2009 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-19380115

RESUMO

Positive-strand RNA viruses are known to rearrange cellular membranes to facilitate viral genome replication. The biogenesis and three-dimensional organization of these membranes and the link between replication and virus assembly sites is not fully clear. Using electron microscopy, we find Dengue virus (DENV)-induced vesicles, convoluted membranes, and virus particles to be endoplasmic reticulum (ER)-derived, and we detect double-stranded RNA, a presumed marker of RNA replication, inside virus-induced vesicles. Electron tomography (ET) shows DENV-induced membrane structures to be part of one ER-derived network. Furthermore, ET reveals vesicle pores that could enable release of newly synthesized viral RNA and reveals budding of DENV particles on ER membranes directly apposed to vesicle pores. Thus, DENV modifies ER membrane structure to promote replication and efficient encapsidation of the genome into progeny virus. This architecture of DENV replication and assembly sites could explain the coordination of distinct steps of the flavivirus replication cycle.


Assuntos
Vírus da Dengue/fisiologia , Vírus da Dengue/ultraestrutura , Hepatócitos/ultraestrutura , Hepatócitos/virologia , Montagem de Vírus , Replicação Viral , Linhagem Celular Tumoral , Membrana Celular/ultraestrutura , Membrana Celular/virologia , Vesículas Citoplasmáticas/ultraestrutura , Vesículas Citoplasmáticas/virologia , Retículo Endoplasmático/ultraestrutura , Retículo Endoplasmático/virologia , Humanos , Microscopia Eletrônica
11.
Nat Rev Microbiol ; 6(5): 363-74, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18414501

RESUMO

Viruses are intracellular parasites that use the host cell they infect to produce new infectious progeny. Distinct steps of the virus life cycle occur in association with the cytoskeleton or cytoplasmic membranes, which are often modified during infection. Plus-stranded RNA viruses induce membrane proliferations that support the replication of their genomes. Similarly, cytoplasmic replication of some DNA viruses occurs in association with modified cellular membranes. We describe how viruses modify intracellular membranes, highlight similarities between the structures that are induced by viruses of different families and discuss how these structures could be formed.


Assuntos
Membranas Intracelulares/ultraestrutura , Membranas Intracelulares/virologia , Replicação Viral , Animais , Autofagia , Humanos , Camundongos
12.
Future Microbiol ; 3(2): 155-65, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18366336

RESUMO

Dengue virus (DENV)--a mosquito transmitted pathogen--is the causative agent of Dengue fever, the most important arboviral disease of humans, which affects an estimated 50-100 million people annually. Despite the high morbidity and mortality associated with DENV infections, an effective DENV vaccine and antiviral therapies are still missing. An improved understanding of the molecular mechanisms underlying the different steps of the DENV replication cycle, for example, genome replication and virus maturation, could help to develop such substances. Over the past several years, many important findings have been published with respect to a better understanding of DENV replication. In this review we will highlight recent insights into the molecular mechanisms of the viral replication cycle.


Assuntos
Vírus da Dengue/crescimento & desenvolvimento , Vírus da Dengue/genética , Genoma Viral , Replicação Viral , Modelos Biológicos
13.
PLoS Pathog ; 4(3): e1000035, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18369481

RESUMO

Persistent infection with the hepatitis C virus (HCV) is a major risk factor for the development of liver cirrhosis and hepatocellular carcinoma. With an estimated about 3% of the world population infected with this virus, the lack of a prophylactic vaccine and a selective therapy, chronic hepatitis C currently is a main indication for liver transplantation. The establishment of cell-based replication and virus production systems has led to first insights into the functions of HCV proteins. However, the role of nonstructural protein 5A (NS5A) in the viral replication cycle is so far not known. NS5A is a membrane-associated RNA-binding protein assumed to be involved in HCV RNA replication. Its numerous interactions with the host cell suggest that NS5A is also an important determinant for pathogenesis and persistence. In this study we show that NS5A is a key factor for the assembly of infectious HCV particles. We specifically identify the C-terminal domain III as the primary determinant in NS5A for particle formation. We show that both core and NS5A colocalize on the surface of lipid droplets, a proposed site for HCV particle assembly. Deletions in domain III of NS5A disrupting this colocalization abrogate infectious particle formation and lead to an enhanced accumulation of core protein on the surface of lipid droplets. Finally, we show that mutations in NS5A causing an assembly defect can be rescued by trans-complementation. These data provide novel insights into the production of infectious HCV and identify NS5A as a major determinant for HCV assembly. Since domain III of NS5A is one of the most variable regions in the HCV genome, the results suggest that viral isolates may differ in their level of virion production and thus in their level of fitness and pathogenesis.


Assuntos
Hepacivirus/fisiologia , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus/fisiologia , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Técnica Indireta de Fluorescência para Anticorpo , Hepacivirus/química , Hepacivirus/ultraestrutura , Antígenos da Hepatite C/análise , Antígenos da Hepatite C/metabolismo , Humanos , Mutação , Estrutura Terciária de Proteína , RNA Viral/metabolismo , Proteínas do Core Viral/análise , Proteínas do Core Viral/metabolismo , Proteínas não Estruturais Virais/química
14.
J Biol Chem ; 282(12): 8873-82, 2007 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-17276984

RESUMO

Dengue virus (DV) is a positive sense RNA virus replicating in the cytoplasm in membranous compartments that are induced by viral infection. The non-structural protein (NS) 4A is one of the least characterized DV proteins. It is highly hydrophobic with its C-terminal region (designated 2K fragment) serving as a signal sequence for the translocation of the adjacent NS4B into the endoplasmic reticulum (ER) lumen. In this report, we demonstrate that NS4A associates with membranes via 4 internal hydrophobic regions, which are all able to mediate membrane targeting of a cytosolic reporter protein. We also developed a model for the membrane topology of NS4A in which the N-terminal third of NS4A localizes to the cytoplasm, while the remaining part contains three transmembrane segments, with the C-terminal end localized in the ER lumen. Subcellular localization experiments in DV-infected cells revealed that NS4A resides primarily in ER-derived cytoplasmic dot-like structures that also contain dsRNA and other DV proteins, suggesting that NS4A is a component of the membrane-bound viral replication complex (RC). Interestingly, the individual expression of DV NS4A lacking the 2K fragment resulted in the induction of cytoplasmic membrane alterations resembling virus-induced structures, whereas expression of full-length NS4A does not induce comparable membrane alterations. Thus, proteolytic removal of the 2K peptide appears to be important for induction of membrane alterations that may harbor the viral RC. These results shed new light on the role of NS4A in the DV replication cycle and provide a model of how this protein induces membrane rearrangements and how this property may be regulated.


Assuntos
Membrana Celular/metabolismo , Vírus da Dengue/metabolismo , Regulação Viral da Expressão Gênica , Proteínas não Estruturais Virais/biossíntese , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/fisiologia , Linhagem Celular Tumoral , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Glicosilação , Humanos , Microscopia Confocal , Modelos Biológicos , Modelos Genéticos , Estrutura Terciária de Proteína , RNA/química , RNA Viral/química , Proteínas não Estruturais Virais/metabolismo
15.
J Biol Chem ; 281(13): 8854-63, 2006 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16436383

RESUMO

Dengue virus (DV) is a member of the family Flaviviridae. These positive strand RNA viruses encode a polyprotein that is processed in case of DV into 10 proteins. Although for most of these proteins distinct functions have been defined, this is less clear for the highly hydrophobic non-structural protein (NS) 4B. Despite its possible role as an antagonist of the interferon-induced antiviral response, this protein may play an additional more direct role for viral replication. In this study we determined the subcellular localization, membrane association, and membrane topology of DV NS4B. We found that NS4B resides primarily in cytoplasmic foci originating from the endoplasmic reticulum. NS4B colocalizes with NS3 and double-stranded RNA, an intermediate of viral replication, arguing that NS4B is part of the membrane-bound viral replication complex. Biochemical analysis revealed that NS4B is an integral membrane protein, and that its preceding 2K signal sequence is not required for this integration. We identified three membrane-spanning segments in the COOH-terminal part of NS4B that are sufficient to target a cytosolic marker protein to intracellular membranes. Furthermore, we established a membrane topology model of NS4B in which the NH2-terminal part of the protein is localized in the endoplasmic reticulum lumen, whereas the COOH-terminal part is composed of three trans-membrane domains with the COOH-terminal tail localized in the cytoplasm. This topology model provides a good starting point for a detailed investigation of the function of NS4B in the DV life cycle.


Assuntos
Vírus da Dengue/química , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , RNA Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Animais , Biomarcadores/metabolismo , Carcinoma Hepatocelular/patologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Chlorocebus aethiops , Corantes Fluorescentes , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imuno-Histoquímica , Indóis , Neoplasias Hepáticas/patologia , Microscopia Confocal , Modelos Biológicos , Dados de Sequência Molecular , Sinais Direcionadores de Proteínas , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Frações Subcelulares/metabolismo , Células Vero , Proteínas não Estruturais Virais/classificação , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA