Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7157, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418327

RESUMO

Temperate understory plant species are at risk from climate change and anthropogenic threats that include increased deer herbivory, habitat loss, pollinator declines and mismatch, and nutrient pollution. Recent work suggests that spring ephemeral wildflowers may be at additional risk due to phenological mismatch with deciduous canopy trees. The study of this dynamic, commonly referred to as "phenological escape", and its sensitivity to spring temperature is limited to eastern North America. Here, we use herbarium specimens to show that phenological sensitivity to spring temperature is remarkably conserved for understory wildflowers across North America, Europe, and Asia, but that canopy trees in North America are significantly more sensitive to spring temperature compared to in Asia and Europe. We predict that advancing tree phenology will lead to decreasing spring light windows in North America while spring light windows will be maintained or even increase in Asia and Europe in response to projected climate warming.


Assuntos
Cervos , Animais , Temperatura , Estações do Ano , Árvores , Mudança Climática
2.
Glob Chang Biol ; 27(18): 4435-4448, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34101938

RESUMO

Siberia has undergone dramatic climatic changes due to global warming in recent decades. Yet, the ecological responses to these climatic changes are still poorly understood due to a lack of data. Here, we use a unique data set from the Russian 'Chronicles of Nature' network to analyse the long-term (1976-2018) phenological shifts in leaf out, flowering, fruiting and senescence of 67 common Siberian plant species. We find that Siberian boreal forest plants advanced their early season (leaf out and flowering) and mid-season (fruiting) phenology by -2.2, -0.7 and -1.6 days/decade, and delayed the onset of senescence by 1.6 days/decade during this period. These mean values, however, are subject to substantial intraspecific variability, which is partly explained by the plants' growth forms. Trees and shrubs advanced leaf out and flowering (-3.1 and -3.3. days/decade) faster than herbs (-1 day/decade), presumably due to the more direct exposure of leaf and flower buds to ambient air for the woody vegetation. For senescence, we detected a reverse pattern: stronger delays in herbs (2.1 days/decade) than in woody plants (1.0-1.2 days/decade), presumably due to the stronger effects of autumn frosts on the leaves of herbs. Interestingly, the timing of fruiting in all four growth forms advanced at similar paces, from 1.4 days/decade in shrubs to 1.7 days/decade in trees and herbs. Our findings point to a strong, yet heterogeneous, response of Siberian plant phenology to recent global warming. Furthermore, the results highlight that species- and growth form-specific differences among study species could be used to identify plants particularly at risk of decline due to their low adaptive capacity or a loss of synchronization with important interaction partners.


Assuntos
Mudança Climática , Árvores , Aquecimento Global , Folhas de Planta , Estações do Ano , Temperatura
3.
Ann Bot ; 128(2): 159-170, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-33830225

RESUMO

BACKGROUND AND AIMS: Fruiting remains under-represented in long-term phenology records, relative to leaf and flower phenology. Herbarium specimens and historical field notes can fill this gap, but selecting and synthesizing these records for modern-day comparison requires an understanding of whether different historical data sources contain similar information, and whether similar, but not equivalent, fruiting metrics are comparable with one another. METHODS: For 67 fleshy-fruited plant species, we compared observations of fruiting phenology made by Henry David Thoreau in Concord, Massachusetts (1850s), with phenology data gathered from herbarium specimens collected across New England (mid-1800s to 2000s). To identify whether fruiting times and the order of fruiting among species are similar between datasets, we compared dates of first, peak and last observed fruiting (recorded by Thoreau), and earliest, mean and latest specimen (collected from herbarium records), as well as fruiting durations. KEY RESULTS: On average, earliest herbarium specimen dates were earlier than first fruiting dates observed by Thoreau; mean specimen dates were similar to Thoreau's peak fruiting dates; latest specimen dates were later than Thoreau's last fruiting dates; and durations of fruiting captured by herbarium specimens were longer than durations of fruiting observed by Thoreau. All metrics of fruiting phenology except duration were significantly, positively correlated within (r: 0.69-0.88) and between (r: 0.59-0.85) datasets. CONCLUSIONS: Strong correlations in fruiting phenology between Thoreau's observations and data from herbaria suggest that field and herbarium methods capture similar broad-scale phenological information, including relative fruiting times among plant species in New England. Differences in the timing of first, last and duration of fruiting suggest that historical datasets collected with different methods, scales and metrics may not be comparable when exact timing is important. Researchers should strongly consider matching methodology when selecting historical records of fruiting phenology for present-day comparisons.


Assuntos
Frutas , Folhas de Planta , Flores , Massachusetts , Plantas
4.
PLoS One ; 15(10): e0224959, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33031384

RESUMO

Heat poses an urgent threat to public health in cities, as the urban heat island (UHI) effect can amplify exposures, contributing to high heat-related mortality and morbidity. Urban trees have the potential to mitigate heat by providing substantial cooling, as well as co-benefits such as reductions in energy consumption. The City of Boston has attempted to expand its urban canopy, yet maintenance costs and high tree mortality have hindered successful canopy expansion. Here, we present an interactive web application called Right Place, Right Tree-Boston that aims to support informed decision-making for planting new trees. To highlight priority regions for canopy expansion, we developed a Boston-specific Heat Vulnerability Index (HVI) and present this alongside maps of summer daytime land surface temperatures. We also provide information about tree pests and diseases, suitability of species for various conditions, land ownership, maintenance tips, and alternatives to tree planting. This web application is designed to support decision-making at multiple spatial scales, to assist city officials as well as residents who are interested in expanding or maintaining Boston's urban forest.


Assuntos
Conservação de Recursos Energéticos/métodos , Árvores/crescimento & desenvolvimento , Agricultura , Boston , Tomada de Decisões , Temperatura Alta , Reforma Urbana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...