Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Sensors (Basel) ; 23(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37514791

RESUMO

Anthropogenic emissions of ammonia to the atmosphere, particularly those from agricultural sources, can be damaging to the environment and human health and can drive a need for sensor technologies that can be used to detect and quantify the emissions. Mobile sensing approaches that can be deployed on ground-based or aerial vehicles can provide scalable solutions for high throughput measurements but require relatively compact and low-power sensor systems. This contribution presents an ammonia sensor based on wavelength modulation spectroscopy (WMS) integrated with a Herriott multi-pass cell and a quantum cascade laser (QCL) at 10.33 µm oriented to mobile use. An open-path configuration is used to mitigate sticky-gas effects and achieve high time-response. The final sensor package is relatively small (~20 L), lightweight (~3.5 kg), battery-powered (<30 W) and operates autonomously. Details of the WMS setup and analysis method are presented along with laboratory tests showing sensor accuracy (<~2%) and precision (~4 ppb in 1 s). Initial field deployments on both ground vehicles and a fixed-wing unmanned aerial vehicle (UAV) are also presented.

2.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925464

RESUMO

The identification of thrombospondin-1 as an angiogenesis inhibitor in 1990 prompted interest in its role in cancer biology and potential as a therapeutic target. Decreased thrombospondin-1 mRNA and protein expression are associated with progression in several cancers, while expression by nonmalignant cells in the tumor microenvironment and circulating levels in cancer patients can be elevated. THBS1 is not a tumor suppressor gene, but the regulation of its expression in malignant cells by oncogenes and tumor suppressor genes mediates some of their effects on carcinogenesis, tumor progression, and metastasis. In addition to regulating angiogenesis and perfusion of the tumor vasculature, thrombospondin-1 limits antitumor immunity by CD47-dependent regulation of innate and adaptive immune cells. Conversely, thrombospondin-1 is a component of particles released by immune cells that mediate tumor cell killing. Thrombospondin-1 differentially regulates the sensitivity of malignant and nonmalignant cells to genotoxic stress caused by radiotherapy and chemotherapy. The diverse activities of thrombospondin-1 to regulate autophagy, senescence, stem cell maintenance, extracellular vesicle function, and metabolic responses to ischemic and genotoxic stress are mediated by several cell surface receptors and by regulating the functions of several secreted proteins. This review highlights progress in understanding thrombospondin-1 functions in cancer and the challenges that remain in harnessing its therapeutic potential.


Assuntos
Neoplasias , Trombospondina 1/fisiologia , Microambiente Tumoral/fisiologia , Animais , Adesão Celular , Movimento Celular , Humanos , Integrinas/metabolismo , Camundongos , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Neoplasias/patologia , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/genética , Linfócitos T/imunologia , Trombospondina 1/genética , Trombospondina 1/metabolismo
3.
ACS Chem Biol ; 15(6): 1566-1574, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32320205

RESUMO

Protein-protein interactions (PPIs) mediate nearly every cellular process and represent attractive targets for modulating disease states but are challenging to target with small molecules. Despite this, several PPI inhibitors (iPPIs) have entered clinical trials, and a growing number of PPIs have become validated drug targets. However, high-throughput screening efforts still endure low hit rates mainly because of the use of unsuitable screening libraries. Here, we describe the collective effort of a French consortium to build, select, and store in plates a unique chemical library dedicated to the inhibition of PPIs. Using two independent predictive models and two updated databases of experimentally confirmed PPI inhibitors developed by members of the consortium, we built models based on different training sets, molecular descriptors, and machine learning methods. Independent statistical models were used to select putative PPI inhibitors from large commercial compound collections showing great complementarity. Medicinal chemistry filters were applied to remove undesirable structures from this set (such as PAINS, frequent hitters, and toxic compounds) and to improve drug likeness. The remaining compounds were subjected to a clustering procedure to reduce the final size of the library while maintaining its chemical diversity. In practice, the library showed a 46-fold activity rate enhancement when compared to a non-iPPI-enriched diversity library in high-throughput screening against the CD47-SIRPα PPI. The Fr-PPIChem library is plated in 384-well plates and will be distributed on demand to the scientific community as a powerful tool for discovering new chemical probes and early hits for the development of potential therapeutic drugs.


Assuntos
Bases de Dados de Compostos Químicos , Ensaios de Triagem em Larga Escala/métodos , Mapas de Interação de Proteínas , Bibliotecas de Moléculas Pequenas/química , Descoberta de Drogas , Modelos Químicos , Reprodutibilidade dos Testes
4.
PLoS One ; 15(4): e0226661, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32240171

RESUMO

CD47 is an immune checkpoint protein that downregulates both the innate and adaptive anti-tumor immune response via its counter receptor SIRPα. Biologics, including humanized CD47 monoclonal antibodies and decoy SIRPα receptors, that block the SIRPα-CD47 interaction, are currently being developed as cancer immunotherapy agents. However, adverse side effects and limited penetration of tumor tissue associated with their structure and large size may impede their clinical application. We recently developed a quantitative high throughput screening assay platform to identify small molecules that disrupt the binding of SIRPα and CD47 as an alternative approach to these protein-based therapeutics. Here, we report on the development and optimization of a cell-based binding assay to validate active small molecules from our biochemical screening effort. This assay has a low volume, high capacity homogenous format that relies on laser scanning cytometry (LSC) and associated techniques to enhance signal to noise measurement of cell surface binding. The LSC assay is specific, concentration dependent, and validated for the two major human SIRPα variants (V1 and V2), with results that parallel those of our biochemical data as well as published studies. We also utilized the LSC assay to confirm published studies showing that the inhibition of amino-terminal pyroglutamate formation on CD47 using the glutaminyl cyclase inhibitor SEN177 disrupts SIRPα binding. The SIRPα-CD47 interaction could be quantitatively measured in live and fixed tumor cells. Use of fixed cells reduces the burden of cell maintenance and provides stable cell standards to control for inter- and intra-assay variations. We also demonstrate the utility of the assay to characterize the activity of the first reported small molecule antagonists of the SIRPα-CD47 interaction. This assay will support the screening of thousands of compounds to identify or validate active small molecules as hits, develop structure activity relationships and assist in the optimization of hits to leads by a typical iterative medicinal chemistry campaign.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Antígenos de Diferenciação/genética , Antígeno CD47/genética , Neoplasias/tratamento farmacológico , Receptores Imunológicos/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Imunidade Adaptativa/genética , Aminoaciltransferases/antagonistas & inibidores , Aminoaciltransferases/química , Antígenos de Diferenciação/química , Antígeno CD47/química , Desenvolvimento de Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Imunoterapia/métodos , Células Jurkat , Citometria de Varredura a Laser , Ligantes , Oncologia/tendências , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Fagocitose/efeitos dos fármacos , Mapas de Interação de Proteínas/genética , Receptores Imunológicos/química , Bibliotecas de Moléculas Pequenas/química
5.
Sensors (Basel) ; 20(2)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947508

RESUMO

We present the development, integration, and testing of an open-path cavity ring-down spectroscopy (CRDS) methane sensor for deployment on small unmanned aerial systems (sUAS). The open-path configuration used here (without pump or flow-cell) enables a low mass (4 kg) and low power (12 W) instrument that can be readily integrated to sUAS, defined here as having all-up mass of <25 kg. The instrument uses a compact telecom style laser at 1651 nm (near-infrared) and a linear 2-mirror high-finesse cavity. We show test results of flying the sensor on a DJI Matrice 600 hexacopter sUAS. The high sensitivity of the CRDS method allows sensitive methane detection with a precision of ~10-30 ppb demonstrated for actual flight conditions. A controlled release setup, where known mass flows are delivered, was used to simulate point-source methane emissions. Examples of methane plume detection from flight tests suggest that isolated plumes from sources with a mass flow as low as ~0.005 g/s can be detected. The sUAS sensor should have utility for emissions monitoring and quantification from natural gas infrastructure. To the best of our knowledge, it is also the first CRDS sensor directly deployed onboard an sUAS.

6.
Opt Express ; 27(14): 20084-20097, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31503758

RESUMO

We present the design, development, and testing results of a novel laser-based cavity ring-down spectroscopy (CRDS) sensor for methane detection. The sensor is specifically oriented for mobile (i.e. vehicle deployed) monitoring of natural gas emissions from oil and infrastructure. In contrast to most commercial CRDS sensors, we employ an open-path design which allows higher temporal response and a lower power and mass package more suited to vehicle integration. The system operates in the near-infrared (NIR) at 1651 nm with primarily telecom components and includes cellular communication for wireless data transfer. Along with basic sensor design and lab testing, we present results of field measurements showing performance over a range of ambient conditions and examples of methane plume detection.

7.
PLoS One ; 14(7): e0218897, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31276567

RESUMO

CD47 is an immune checkpoint molecule that downregulates key aspects of both the innate and adaptive anti-tumor immune response via its counter receptor SIRPα, and it is expressed at high levels in a wide variety of tumor types. This has led to the development of biologics that inhibit SIRPα engagement including humanized CD47 antibodies and a soluble SIRPα decoy receptor that are currently undergoing clinical trials. Unfortunately, toxicological issues, including anemia related to on-target mechanisms, are barriers to their clinical advancement. Another potential issue with large biologics that bind CD47 is perturbation of CD47 signaling through its high-affinity interaction with the matricellular protein thrombospondin-1 (TSP1). One approach to avoid these shortcomings is to identify and develop small molecule molecular probes and pretherapeutic agents that would (1) selectively target SIRPα or TSP1 interactions with CD47, (2) provide a route to optimize pharmacokinetics, reduce on-target toxicity and maximize tissue penetration, and (3) allow more flexible routes of administration. As the first step toward this goal, we report the development of an automated quantitative high-throughput screening (qHTS) assay platform capable of screening large diverse drug-like chemical libraries to discover novel small molecules that inhibit CD47-SIRPα interaction. Using time-resolved Förster resonance energy transfer (TR-FRET) and bead-based luminescent oxygen channeling assay formats (AlphaScreen), we developed biochemical assays, optimized their performance, and individually tested them in small-molecule library screening. Based on performance and low false positive rate, the LANCE TR-FRET assay was employed in a ~90,000 compound library qHTS, while the AlphaScreen oxygen channeling assay served as a cross-validation orthogonal assay for follow-up characterization. With this multi-assay strategy, we successfully eliminated compounds that interfered with the assays and identified five compounds that inhibit the CD47-SIRPα interaction; these compounds will be further characterized and later disclosed. Importantly, our results validate the large library qHTS for antagonists of CD47-SIRPα interaction and suggest broad applicability of this approach to screen chemical libraries for other protein-protein interaction modulators.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antígenos de Diferenciação/metabolismo , Antígeno CD47/metabolismo , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Receptores Imunológicos/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antígenos de Diferenciação/química , Biotina/química , Biotina/metabolismo , Antígeno CD47/química , Antígeno CD47/imunologia , Humanos , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Receptores Imunológicos/química , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos
8.
Data Brief ; 18: 1257-1266, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29900302

RESUMO

The data presented in this study were obtained from a novel approach to estimate a comprehensive loan acquisition cost. The latter includes commute costs and wage losses in addition to the monthly installment payments. These cost estimates represent the monetary value (in U.S. dollars) of the costs of driving to and from the installment lender storefront and that of the potential hourly wage losses, that is, wage loss from the driving time and the time spent at the loan office filling out the required paperwork to obtain the loan. Borrowers only get the net loan proceeds, that is, the original loan amount minus the comprehensive loan acquisition costs. The study area has 160 counties. It was created from the ESRI ArcGIS Map (a mapping software) using the spatial data from the U.S. Census, Topologically Integrated Geographic Encoding and Referencing (TIGER) Cartographic boundary files representing the geographies of states and counties. Using the U.S. road networks, the origin of the trip is a county seat in Arkansas and the destination of the trip is a county seat in a surrounding state of Tennessee, Mississippi, Louisiana, Texas, Oklahoma, and Missouri. The transportation networks were established using Google Earth/Directions to efficiently measure the travel time (distance). The average cost of a trip of 17 cents (U.S. dollar) was calculated based on the U.S. Department of Transportation Survey data, which identify important attributes of a typical vehicle used in a county such as model make, age of the vehicle, fuel consumption, etc. There are 10 occupational industry sectors where a typical borrower has a job. To estimate wage loss, the data were gathered from the U.S. Department of Labor, Bureau of Labor Statistics, namely, the Occupational Employment Statistics. Putting the missing pieces together, the data contain in this study improve our understanding of extra costs borne by borrowers located in the "loan desert" area. As expected, interior counties post high loan acquisition costs compared with border counties. The data from this study are useful to the public, businesses, policymakers, and researchers working on consumer finance.

9.
Sci Rep ; 6: 19684, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26813769

RESUMO

Thrombospondin-1 regulates inflammation by engaging several cell surface receptors and by modulating activities of other secreted factors. We have uncovered a novel role of thrombospondin-1 in modulating production and activation of the proinflammatory cytokine IL-1ß by human and murine macrophages. Physiological concentrations of thrombospondin-1 limit the induction by lipopolysaccharide of IL-1ß mRNA and total protein production by human macrophages. This inhibition can be explained by the ability of thrombospondin-1 to disrupt the interaction between CD47 and CD14, thereby limiting activation of NFκB/AP-1 by lipopolysaccharide. Only the CD47-binding domain of thrombospondin-1 exhibits this activity. In contrast, CD47, CD36, and integrin-binding domains of thrombospondin-1 independently enhance the inflammasome-dependent maturation of IL-1ß in human THP-1 monocyte-derived macrophages. Correspondingly, mouse bone marrow-derived macrophages that lack either thrombospondin-1 or CD47 exhibit diminished induction of mature IL-1ß in response to lipopolysaccharide. Lack of CD47 also limits lipopolysaccharide induction of IL-1ß, NLRP3, and caspase-1 mRNAs. These data demonstrate that thrombospondin-1 exerts CD47-dependent and -independent pro-and anti-inflammatory effects on the IL-1ß pathway. Therefore, thrombospondin-1 and its receptor CD47 may be useful targets for limiting the pro-inflammatory effects of lipopolysaccharide and for treating endotoxemia.


Assuntos
Antígeno CD47/metabolismo , Interleucina-1beta/biossíntese , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Trombospondina 1/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antígeno CD47/genética , Caspase 1/genética , Caspase 1/metabolismo , Linhagem Celular , Expressão Gênica , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Knockout , Modelos Biológicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ligação Proteica , Transdução de Sinais , Trombospondina 1/genética , Receptor 4 Toll-Like/metabolismo
10.
J Biol Chem ; 290(41): 24858-74, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26311851

RESUMO

Modulating tissue responses to stress is an important therapeutic objective. Oxidative and genotoxic stresses caused by ionizing radiation are detrimental to healthy tissues but beneficial for treatment of cancer. CD47 is a signaling receptor for thrombospondin-1 and an attractive therapeutic target because blocking CD47 signaling protects normal tissues while sensitizing tumors to ionizing radiation. Here we utilized a metabolomic approach to define molecular mechanisms underlying this radioprotective activity. CD47-deficient cells and cd47-null mice exhibited global advantages in preserving metabolite levels after irradiation. Metabolic pathways required for controlling oxidative stress and mediating DNA repair were enhanced. Some cellular energetics pathways differed basally in CD47-deficient cells, and the global declines in the glycolytic and tricarboxylic acid cycle metabolites characteristic of normal cell and tissue responses to irradiation were prevented in the absence of CD47. Thus, CD47 mediates signaling from the extracellular matrix that coordinately regulates basal metabolism and cytoprotective responses to radiation injury.


Assuntos
Antígeno CD47/metabolismo , Redes e Vias Metabólicas/efeitos da radiação , Tolerância a Radiação , Animais , Antígeno CD47/genética , Ciclo do Ácido Cítrico/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Deleção de Genes , Homeostase/efeitos da radiação , Humanos , Células Jurkat , Metabolômica , Camundongos , Nucleotídeos/biossíntese , Estresse Oxidativo/efeitos da radiação , Via de Pentose Fosfato/efeitos da radiação
11.
Methods Enzymol ; 555: 145-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25747479

RESUMO

Pharmacological concentrations of H2S donors inhibit some T cell functions by inhibiting mitochondrial function, but evidence is also emerging that H2S at physiological concentrations produced via chemical sources and endogenously is a positive physiological mediator of T cell function. Expression of the H2S biosynthetic enzymes cystathionine γ-lyase (CSE) and cystathionine ß-synthase (CBS) is induced in response to T cell receptor signaling. Inhibiting the induction of these enzymes limits T cell activation and proliferation, which can be overcome by exposure to exogenous H2S at submicromolar concentrations. Exogenous H2S at physiological concentrations increases the ability of T cells to form an immunological synapse by altering cytoskeletal actin dynamics and increasing the reorientation of the microtubule-organizing center. Downstream, H2S enhances T cell receptor-dependent induction of CD69, CD25, and Interleukin-2 (IL-2) gene expression. The T cell stimulatory activity of H2S is enhanced under hypoxic conditions that limit its oxidative metabolism by mitochondrial and nonenzymatic processes. Studies of the receptor CD47 have revealed the first endogenous inhibitory signaling pathway that regulates H2S signaling in T cells. Binding of the secreted protein thrombospondin-1 to CD47 elicits signals that block the stimulatory activity of exogenous H2S on T cell activation and limit the induction of CSE and CBS gene expression. CD47 signaling thereby inhibits T cell receptor-mediated T cell activation.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antígeno CD47/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Linfócitos T/efeitos dos fármacos , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Asma/tratamento farmacológico , Asma/imunologia , Asma/metabolismo , Asma/patologia , Antígeno CD47/imunologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Imunidade Celular , Sinapses Imunológicas/efeitos dos fármacos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Ativação Linfocitária/efeitos dos fármacos , Psoríase/tratamento farmacológico , Psoríase/imunologia , Psoríase/metabolismo , Psoríase/patologia , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Trombospondina 1/genética , Trombospondina 1/imunologia
12.
Matrix Biol ; 32(6): 316-24, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23499828

RESUMO

Thrombospondin-1 is a potent suppressor of T cell activation via its receptor CD47. However, the precise mechanism for this inhibition remains unclear. Because H2S is an endogenous potentiator of T cell activation and is necessary for full T cell activation, we hypothesized that thrombospondin-1 signaling through CD47 inhibits T cell activation by antagonizing H2S signaling. Primary T cells from thrombospondin-1 null mice were more sensitive to H2S-dependent activation assessed by proliferation and induction of interleukin-2 and CD69 mRNAs. Exogenous thrombospondin-1 inhibited H2S responses in wild type and thrombospondin-1 null T cells but enhanced the same responses in CD47 null T cells. Fibronectin, which shares integrin and glycosaminoglycan binding properties with thrombospondin-1 but not CD47 binding, did not inhibit H2S signaling. A CD47-binding peptide derived from thrombospondin-1 inhibited H2S-induced activation, whereas two other functional sequences from thrombospondin-1 enhanced H2S signaling. Therefore, engaging CD47 is necessary and sufficient for thrombospondin-1 to inhibit H2S-dependent T cell activation. H2S stimulated T cell activation by potentiating MEK-dependent ERK phosphorylation, and thrombospondin-1 inhibited this signaling in a CD47-dependent manner. Thrombospondin-1 also limited activation-dependent T cell expression of the H2S biosynthetic enzymes cystathionine ß-synthase and cystathionine γ-lyase, thereby limiting the autocrine role of H2S in T cell activation. Thus, thrombospondin-1 signaling through CD47 is the first identified endogenous inhibitor of H2S signaling and constitutes a novel mechanism that negatively regulates T cell activation.


Assuntos
Antígeno CD47/metabolismo , Sulfeto de Hidrogênio/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Linfócitos T/metabolismo , Trombospondina 1/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/metabolismo , Sítios de Ligação , Antígeno CD47/genética , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Regulação da Expressão Gênica , Humanos , Sulfeto de Hidrogênio/farmacologia , Interleucina-2/genética , Interleucina-2/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Cultura Primária de Células , Ligação Proteica , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Trombospondina 1/genética , Trombospondina 1/farmacologia
13.
J Inorg Biochem ; 118: 128-33, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23107606

RESUMO

The oxonitrate(1-) anion (NO(-)), the one-electron reduction product of nitric oxide and conjugate base of HNO, has not been synthesized and isolated due to the inherent reactivity of this anion. The large scale synthesis and characterization of a stable NO(-) salt is described here. The lithium salt of oxonitrate (LiNO) was formed by the deprotonation of N-hydroxybenzenesulfonamide with phenyllithium in aprotic, deoxygenated conditions. LiNO exhibited antiferromagnetic paramagnetism as determined by SQUID magnetometry, consistent with a triplet ground state of NO(-). LiNO reacted with HCl to yield nitrous oxide consistent with HNO formation and dimerization. LiNO consumed O(2) in a pH-dependent manner to initially produce peroxynitrite and eventually nitrite. Consistent with the reduction potential of NO, LiNO exhibited an oxidation potential of approximately +0.80 V as determined by reactions with a series of viologen electron acceptors. LiNO also reacted with ferric tetraphenylporphyrin chloride (Fe(TPP)Cl), potassium tetracyanonickelate (K(2)Ni(CN)(4)) and nitrosobenzene in a manner that is identical to other HNO/NO(-) donors. We conclude that the physical and chemical characteristics of LiNO are indistinguishable from the experimentally and theoretically derived data on oxonitrate (1-) anion. The bulk synthesis and isolation of a stable (3)NO(-) salt described here allow the chemical and physical properties of this elusive nitrogen oxide to be thoroughly studied as this once elusive nitrogen oxide is now attainable.


Assuntos
Compostos de Lítio/síntese química , Óxidos de Nitrogênio/síntese química , Cianetos/química , Ácido Clorídrico/química , Compostos de Lítio/química , Níquel/química , Doadores de Óxido Nítrico/síntese química , Doadores de Óxido Nítrico/química , Óxidos de Nitrogênio/química , Nitrosaminas/química , Compostos Nitrosos/química , Óxido Nitroso/química , Oxidantes/química , Oxirredução , Oxigênio/química , Porfirinas/química , Sulfonamidas/química , Viologênios/química
15.
Autophagy ; 8(11): 1628-42, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22874555

RESUMO

Accidental or therapeutic exposure to ionizing radiation has severe physiological consequences and can result in cell death. We previously demonstrated that deficiency or blockade of the ubiquitously expressed receptor CD47 results in remarkable cell and tissue protection against ischemic and radiation stress. Antagonists of CD47 or its ligand THBS1/thrombospondin 1 enhance cell survival and preserve their proliferative capacity. However the signaling pathways that mediate this cell-autonomous radioprotection are unclear. We now report a marked increase in autophagy in irradiated T-cells and endothelial cells lacking CD47. Irradiated T cells lacking CD47 exhibit significant increases in formation of autophagosomes comprising double-membrane vesicles visualized by electron microscopy and numbers of MAP1LC3A/B(+) puncta. Moreover, we observed significant increases in BECN1, ATG5, ATG7 and a reduction in SQSTM1/p62 expression relative to irradiated wild-type T cells. We observed similar increases in autophagy gene expression in mice resulting from blockade of CD47 in combination with total body radiation. Pharmacological or siRNA-mediated inhibition of autophagy selectively sensitized CD47-deficient cells to radiation, indicating that enhanced autophagy is necessary for the prosurvival response to CD47 blockade. Moreover, re-expression of CD47 in CD47-deficient T cells sensitized these cells to death by ionizing radiation and reversed the increase in autophagic flux associated with survival. This study indicates that CD47 deficiency confers cell survival through the activation of autophagic flux and identifies CD47 blockade as a pharmacological route to modulate autophagy for protecting tissue from radiation injury.


Assuntos
Autofagia , Antígeno CD47/genética , Antígeno CD47/metabolismo , Especificidade de Órgãos/efeitos da radiação , Proteção Radiológica , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose/efeitos da radiação , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/genética , Proteína 5 Relacionada à Autofagia , Proteína 7 Relacionada à Autofagia , Proteína Beclina-1 , Regulação da Expressão Gênica/efeitos da radiação , Inativação Gênica/efeitos da radiação , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos da radiação , Humanos , Células Jurkat , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Radiação Ionizante , Proteína Sequestossoma-1 , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo , Regulação para Cima/efeitos da radiação , Irradiação Corporal Total
16.
Matrix Biol ; 31(3): 162-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22266027

RESUMO

Matricellular proteins play diverse roles in modulating cell behavior by engaging specific cell surface receptors and interacting with extracellular matrix proteins, secreted enzymes, and growth factors. Studies of such interactions involving thrombospondin-1 have revealed several physiological functions and roles in the pathogenesis of injury responses and cancer, but the relatively mild phenotypes of mice lacking thrombospondin-1 suggested that thrombospondin-1 would not be a central player that could be exploited therapeutically. Recent research focusing on signaling through its receptor CD47, however, has uncovered more critical roles for thrombospondin-1 in acute regulation of cardiovascular dynamics, hemostasis, immunity, and mitochondrial homeostasis. Several of these functions are mediated by potent and redundant inhibition of the canonical nitric oxide pathway. Conversely, elevated tissue thrombospondin-1 levels in major chronic diseases of aging may account for the deficient nitric oxide signaling that characterizes these diseases, and experimental therapeutics targeting CD47 show promise for treating such chronic diseases as well as acute stress conditions that are associated with elevated thrombospondin-1 expression.


Assuntos
Antígeno CD47/química , Sistema Cardiovascular/química , Transdução de Sinais , Estresse Fisiológico , Trombospondina 1/química , Sequência de Aminoácidos , Animais , Fenômenos Fisiológicos Cardiovasculares , Sistema Cardiovascular/fisiopatologia , Humanos , Camundongos , Dados de Sequência Molecular , Óxido Nítrico/química , Ligação Proteica , Mapeamento de Interação de Proteínas , Receptor Cross-Talk , Trombospondina 1/fisiologia
17.
J Biol Chem ; 287(6): 4211-21, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22167178

RESUMO

H(2)S is an endogenous signaling molecule that may act via protein sulfhydrylation to regulate various physiological functions. H(2)S is also a byproduct of dietary sulfate metabolism by gut bacteria. Inflammatory bowel diseases such as ulcerative colitis are associated with an increase in the colonization of the intestine by sulfate reducing bacteria along with an increase in H(2)S production. Consistent with its increased production, H(2)S is implicated as a mediator of ulcerative colitis both in its genesis or maintenance. As T cells are well established mediators of inflammatory bowel disease, we investigated the effect of H(2)S exposure on T cell activation. Using primary mouse T lymphocytes (CD3+), OT-II CD4+ T cells, and the human Jurkat T cell line, we show that physiological levels of H(2)S potentiate TCR-induced activation. Nanomolar levels of H(2)S (50-500 nM) enhance T cell activation assessed by CD69 expression, interleukin-2 expression, and CD25 levels. Exposure of T cells to H(2)S dose-dependently enhances TCR-stimulated proliferation with a maximum at 300 nM (30% increase, p < 0.01). Furthermore, activation increases the capacity of T cells to make H(2)S via increased expression of cystathionine γ-lyase and cystathionine ß-synthase. Disrupting this response by silencing these H(2)S producing enzymes impairs T cell activation, and proliferation and can be rescued by the addition of 300 nM H(2)S. Thus, H(2)S represents a novel autocrine immunomodulatory molecule in T cells.


Assuntos
Poluentes Atmosféricos/farmacologia , Linfócitos T CD4-Positivos/imunologia , Sulfeto de Hidrogênio/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/imunologia , Proliferação de Células/efeitos dos fármacos , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/imunologia , Cistationina gama-Liase/genética , Cistationina gama-Liase/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Humanos , Interleucina-2/genética , Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/imunologia , Células Jurkat , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos
18.
Sports Health ; 3(1): 25-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23015987

RESUMO

BACKGROUND: Athletes are known to use over-the-counter pain medication. However, the frequency of such use among National Collegiate Athletic Association (NCAA) Division I-A football athletes is unknown. HYPOTHESIS: NCAA Division I-A football athletes who use nonprescription analgesics for pain misuse these medications. STUDY DESIGN: Cross-sectional study. METHODS: The football players (N, 144) who met the criteria and agreed to participate were from 8 NCAA Division I-A schools. The participants were administered the Over the Counter Drug Screen for Athletes, which measures attitudes toward the use of a spectrum of substances. RESULTS: Among football athletes surveyed who took nonprescription analgesics for football-related pain, 37% reported taking more than the recommended dose. This was slightly higher than the 28% of players who stated they have not taken nonprescription analgesics for football-related pain. Thirty-four percent of all athletes reported using more than the recommended dose of nonprescription analgesics. Athletes who purchased their own nonprescription analgesics communicated poorly regarding nonprescription analgesics use. Those lacking knowledge about nonprescription analgesics and those using nonprescription analgesics in anticipation of pain or to avoid missing a practice or game were most likely to misuse nonprescription analgesics. CONCLUSION: NCAA Division I-A football athletes who use nonprescription analgesics for athletic competition do not misuse nonprescription analgesics.

19.
Cardiovasc Res ; 88(3): 471-81, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20610415

RESUMO

AIMS: Thrombospondin-1 (TSP1), via its necessary receptor CD47, inhibits nitric oxide (NO)-stimulated soluble guanylate cyclase activation in vascular smooth muscle cells, and TSP1-null mice have increased shear-dependent blood flow compared with wild-type mice. Yet, the endothelial basement membrane should in theory function as a barrier to diffusion of soluble TSP1 into the arterial smooth muscle cell layer. These findings suggested that endothelial-dependent differences in blood flow in TSP1-null mice may be the result of direct modulation of endothelial NO synthase (eNOS) activation by circulating TSP1. Here we tested the hypothesis that TSP1 inhibits eNOS activation and endothelial-dependent arterial relaxation. METHODS AND RESULTS: Acetylcholine (ACh)-stimulated activation of eNOS and agonist-driven calcium transients in endothelial cells were inhibited by TSP1. TSP1 also inhibited eNOS phosphorylation at serine(1177). TSP1 treatment of the endothelium of wild-type and TSP1-null but not CD47-null arteries inhibited ACh-stimulated relaxation. TSP1-null vessels demonstrated greater endothelial-dependent vasorelaxation compared with the wild type. Conversely, TSP1-null arteries demonstrated less vasoconstriction to phenylephrine compared with the wild type, which was corrected upon inhibition of eNOS. In TSP1-null mice, intravenous TSP1 blocked ACh-stimulated decreases in blood pressure, and both intravenous TSP1 and a CD47 agonist antibody acutely elevated blood pressure in mice. CONCLUSION: TSP1, via CD47, inhibits eNOS activation and endothelial-dependent arterial relaxation and limits ACh-driven decreases in blood pressure. Conversely, intravenous TSP1 and a CD47 antibody increase blood pressure. These findings suggest that circulating TSP1, by limiting endogenous NO production, functions as a pressor agent supporting blood pressure.


Assuntos
Pressão Sanguínea/fisiologia , Endotélio Vascular/fisiologia , Óxido Nítrico Sintase Tipo III/fisiologia , Trombospondina 1/fisiologia , Vasodilatação/fisiologia , Acetilcolina/farmacologia , Animais , Anticorpos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Antígeno CD47/imunologia , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Humanos , Camundongos , Modelos Animais , Óxido Nítrico Sintase Tipo III/efeitos dos fármacos , Fenilefrina/farmacologia , Trombospondina 1/genética , Trombospondina 1/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia
20.
Br J Pharmacol ; 159(7): 1542-7, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20233213

RESUMO

BACKGROUND AND PURPOSE: Soluble guanylate cyclase (sGC) is the signal transduction enzyme most responsible for mediating the effects of nitric oxide (NO). Recently, NO-independent small molecule activators of sGC have been developed that have promising clinical activities. We have shown that the secreted matrix protein thrombospondin-1 (TSP-1) binds to CD47 and potently inhibits NO stimulation of sGC in endothelial and vascular smooth muscle cells (VSMCs) and platelets. Here we show that TSP-1 signalling via CD47 inhibits sGC activation by NO-independent sGC activating small molecules. EXPERIMENTAL APPROACH: Vascular smooth muscle cells and washed human platelets were pretreated with TSP-1 (2.2 nM) in the presence of haeme-dependent sGC activators (YC-1, BAY 41-2272), and a haeme-independent activator (meso-porphyrin IX), and cGMP levels were measured. The effect of sGC activators on platelet aggregation and contraction of VSMC embedded in collagen gels was also assayed in the presence and absence of TSP-1. KEY RESULTS: Thrombospondin-1 inhibited sGC activator-dependent increase in cGMP in VSMC and platelets. TSP-1 pretreatment also inhibited the ability of these agents to delay thrombin-induced platelet aggregation. TSP-1 pretreatment reduced the ability of sGC activating agents to abrogate VSMC contraction in vitro. CONCLUSIONS AND IMPLICATIONS: This work demonstrates that TSP-1 is a universal inhibitor of sGC, blocking both haeme-dependent and haeme-independent activation. These data coupled with the reported increases in TSP-1 with age, diabetes, ischaemia/reperfusion, and atherosclerosis implies that the therapeutic potential of all drugs that activate sGC could be compromised in disease states where TSP-1/CD47 signalling is elevated.


Assuntos
Plaquetas/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Guanilato Ciclase/antagonistas & inibidores , Trombospondina 1/farmacologia , Plaquetas/enzimologia , Células Cultivadas , GMP Cíclico/metabolismo , Ativação Enzimática , Guanilato Ciclase/metabolismo , Humanos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Agregação Plaquetária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...