Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 61(12): 11, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33049059

RESUMO

Purpose: Although zebrafish rods begin to develop as early as 2 days postfertilization (dpf), they are not deemed anatomically mature and functional until 15 to 21 dpf. A recent study detected a small electroretinogram (ERG) from rods in a cone mutant called no optokinetic response f (nof) at 5 dpf, suggesting that young rods are functional. Whether they can mediate behavioral responses in larvae is unknown. Methods: We first confirmed rod function by measuring nof ERGs under photopic and scotopic illumination at 6 dpf. We evaluated the role of rods in visual behaviors using two different assays: the visual-motor response (VMR) and optokinetic response (OKR). We measured responses from wild-type (WT) larvae and nof mutants under photopic and scotopic illuminations at 6 dpf. Results: Nof mutants lacked a photopic ERG. However, after prolonged dark adaptation, they displayed scotopic ERGs. Compared with WT larvae, the nof mutants displayed reduced VMRs. The VMR difference during light onset gradually diminished with decreased illumination and became nearly identical at lower light intensities. Additionally, light-adapted nof mutants did not display an OKR, whereas dark-adapted nof mutants displayed scotopic OKRs. Conclusions: Because the nof mutants lacked a photopic ERG but displayed scotopic ERGs after dark adaptation, the mutants clearly had functional rods. WT larvae and the nof mutants displayed comparable scotopic light-On VMRs and scotopic OKRs after dark adaptation, suggesting that these responses were driven primarily by rods. Together, these observations indicate that rods contribute to zebrafish visual behaviors as early as 6 dpf.


Assuntos
Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Visão Ocular/fisiologia , Peixe-Zebra/fisiologia , Animais , Visão de Cores/fisiologia , Eletrorretinografia , Técnicas de Genotipagem , Larva , Visão Noturna/fisiologia , Nistagmo Optocinético/fisiologia
2.
Biophys J ; 117(2): 269-280, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31266635

RESUMO

The γ-crystallins of the eye lens nucleus are among the longest-lived proteins in the human body. Synthesized in utero, they must remain folded and soluble throughout adulthood to maintain lens transparency and avoid cataracts. γD- and γS-crystallin are two major monomeric crystallins of the human lens. γD-crystallin is concentrated in the oldest lens fiber cells, the lens nucleus, whereas γS-crystallin is concentrated in the younger cells of the lens cortex. The kinetic stability parameters of these two-domain proteins and their isolated domains were determined and compared. Kinetic unfolding experiments monitored by fluorescence spectroscopy in varying concentrations of guanidinium chloride were used to extrapolate unfolding rate constants and half-lives of the crystallins in the absence of the denaturant. Consistent with their long lifespans in the lens, extrapolated half-lives for the initial unfolding step were on the timescale of years. Both proteins' isolated N-terminal domains were less kinetically stable than their respective C-terminal domains at denaturant concentrations predicted to disrupt the domain interface, but at low denaturant concentrations, the relative kinetic stabilities were reversed. Cataract-associated aggregation has been shown to proceed from partially unfolded intermediates in these proteins; their extreme kinetic stability likely evolved to protect the lens from the initiation of aggregation reactions. Our findings indicate that the domain interface is the source of significant kinetic stability. The gene duplication and fusion event that produced the modern two-domain architecture of vertebrate lens crystallins may be the origin of their high kinetic as well as thermodynamic stability.


Assuntos
Cristalino/metabolismo , gama-Cristalinas/química , gama-Cristalinas/metabolismo , Humanos , Cinética , Modelos Moleculares , Domínios Proteicos , Dobramento de Proteína , Estabilidade Proteica , Temperatura , Fatores de Tempo
3.
Invest Ophthalmol Vis Sci ; 50(11): 5463-71, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19474410

RESUMO

PURPOSE: Anterograde intraflagellar transport (IFT) is essential for photoreceptor outer segment formation and maintenance, as well as for opsin trafficking. However, the role of retrograde IFT in vertebrate photoreceptors remains unclear. The purpose of this study was to evaluate zebrafish photoreceptors lacking the retrograde IFT motor, cytoplasmic dynein-2. METHODS: Morpholino oligonucleotides against the heavy chain (dync2-h1), light intermediate chain (dync2-li1), and intermediate chain (dync2-i1) subunits of cytoplasmic dynein-2 were injected into zebrafish embryos. Retinas and ciliated cells of these zebrafish morphants were analyzed by immunohistochemistry and transmission electron microscopy. Whole-field electroretinograms (ERGs) were performed on dynein morphants at 5 to 6 days after fertilization (dpf). RESULTS: Zebrafish lacking cytoplasmic dynein-2 function exhibited small eyes, kidney cysts, and short photoreceptor outer segments, some of which were disorganized with accumulated vesicles. Morphant photoreceptor connecting cilia were swollen, but neither opsin nor arrestin was mislocalized, although IFT88 accumulated in the distal region of the connecting cilium. Nasal cilia were shortened and displayed cytoplasmic swelling along the axoneme. Loss of cytoplasmic dynein-2 function resulted in a significant reduction in the amplitude of ERG a-, b-, and d-waves but no change in threshold response. CONCLUSIONS: Retrograde IFT is essential for outer segment extension and IFT protein recycling in vertebrate photoreceptors. The results show, for the first time, that the dync2-i1 subunit of cytoplasmic dynein-2 is necessary for retrograde IFT. In addition, arrestin translocation does not require retrograde IFT. Finally, the ERG results indicate that loss of cytoplasmic dynein-2 reduces the photoreceptor light response.


Assuntos
Arrestina/metabolismo , Dineínas do Citoplasma/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Western Blotting , Encéfalo/embriologia , Eletroforese em Gel de Poliacrilamida , Eletrorretinografia , Embrião não Mamífero/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Hibridização In Situ , Rim/embriologia , Células Fotorreceptoras de Vertebrados , Transporte Proteico , Segmento Externo das Células Fotorreceptoras da Retina , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Peixe-Zebra
4.
Mol Vis ; 14: 81-9, 2008 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-18253099

RESUMO

PURPOSE: Amyloid fibrils are associated with a variety of human protein misfolding and protein deposition diseases. Previous studies have shown that bovine crystallins form amyloid fibers under denaturing conditions and amyloid fibers accumulate in the lens of mice carrying mutations in crystallin genes. Within differentiating lens fiber cells, crystallins may be exposed to low pH lysosome compartments. We have investigated whether human gammaD-crystallin forms amyloid fibrils in vitro, when exposed to low pH partially denaturing conditions. METHODS: Human gammaD-crystallin expressed and purified from E. coli, is stable and soluble at 37 degrees C, pH7, and refolds from the fully denatured state back to the native state under these conditions. Purified Human gammaD-crystallin as well as its isolated NH2- and COOH-terminal domains were incubated at acid pH and subsequently examined by transmission electron microscopy, absorption spectroscopy in the presence of Congo red, FTIR, and low-angle X-ray scattering. RESULTS: Incubation of the intact protein at 37 degrees C in 50 mM acetate buffer pH 3 at 50 mg/ml for 2 days, led to formation of a viscous, gel-like solution. Examination of negatively stained samples by transmission electron microscopy revealed linear, non-branching fibrils of variable lengths, with widths ranging from 15 to 35 nm. Incubation with the dye Congo red generated the spectral red shift associated with dye binding to amyloid. Low-angle X-ray scattering from samples showed clear meridional reflection at 4.7 A and a more diffuse reflection on the equator between 10 and 11 A which is the typical "cross-beta" X-ray fiber diffraction pattern for amyloid fibers. FTIR was used to follow the evolution of the secondary structure of gammaD-crystallin with time during incubation of the protein at pH 3. The native protein displayed a major band at 1640 cm-1 that converted during incubation at 37 degrees C to a band at 1616 cm-1. An additional band at 1689 cm-1 also appeared with time. The presence of bands in the regions about 1620 cm-1 and about 1680 cm-1 has been attributed to the formation of intermolecular beta-sheet structure that characterizes the fibrillar amyloid motif. The isolated NH2-terminal 1-82 and COOH-terminal 86-174 domains of HgammaD-crystallin also formed amyloid fibrils after incubation under the same conditions, but to a lesser extent than the full length. CONCLUSIONS: HgammaD-crystallin, as well as its isolated NH2-terminal 1-82 and COOH-terminal 86-174 domains of HgammaD-crystallin formed amyloid fibrils upon incubation at acid pH. Investigations of early stages in cataract formation within the lens will be required to assess whether amyloid fibrils play a role in the initiation of cataract in vivo.


Assuntos
Amiloide/fisiologia , Cristalinas/química , Cristalinas/fisiologia , Amiloide/metabolismo , Amiloide/ultraestrutura , Corantes/metabolismo , Vermelho Congo/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Microscopia Eletrônica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína/fisiologia , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , gama-Cristalinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA